By Type: Journal Article

Vinhas, Raquel, Milton Cordeiro, Fábio Carlos, Soraia Mendo, Alexandra Fernandes, Sara Figueiredo, and Pedro Baptista. "Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial." Journal of Nanobiosensors in Disease Diagnosis (2015): 11-23. AbstractWebsite

Nanotheranostics takes advantage of nanotechnology-based systems in order to diagnose and treat a specific disease. This approach is particularly relevant for personalized medicine, allowing the detection of a disease at an early stage, to direct a suitable therapy toward the target tissue based on the molecular profile of the altered phenotype, subsequently facilitating disease monitoring and following treatment. A tailored strategy also enables to reduce the off-target effects associated with universal treatments and improve the safety profile of a given treatment. The unique optical properties of gold nanoparticles, their ease of surface modification, and high surface-to-volume ratio have made them central players in this area. By combining imaging, targeting, and therapeutic agents in a single vehicle, these nanoconjugates are (ought to be) an important tool in the clinics. In this review, the multifunctionality of gold nanoparticles as theranostics agents will be highlighted, as well as the requirements before the translation of these nanoplatforms into routine clinical practice.

Veigas, Bruno, Carla Portugal, Rita Valerio, Elvira Fortunato, Joao G. Crespo, and Pedro V. Baptista. "Scalable approach for the production of functional DNA based gold nanoprobes." Journal of Membrane Science 492 (2015): 528-535. Abstract


Martins, Pedro, Mara Marques, Lidia Coito, Armando Pombeiro, Pedro V. Baptista, and Alexandra R. Fernandes. "Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions." ANTI-CANCER AGENTS IN MEDICINAL CHEMISTRY 9 (2015). AbstractWebsite

Over the past few years, modern medicinal chemistry has evolved towards providing us new and alternative chemotherapeutic compounds with high cytotoxicity towards tumor cells, alongside with reduced side effects in cancer patients. Organometallic compounds and their unique physic-chemical properties typically used in homogenous catalysis are now being translated as potential candidates for medical purposes. Their structural diversity, ligand exchange, redox and catalytic properties make them promising drug candidates for cancer therapy. Over the last decade this area has witnessed a steady growth and a few organometallic compounds have in fact already entered clinical trials, emphasizing its increasing importance and clinical relevance. Here we intend to stress out the different applications of organometallic compounds in medicine with emphasis on cancer therapy, as well as address setbacks regarding formulation issues, systemic toxicity and off-target effects. Advantages over classical coordination metal complexes, their nanovectorisation and specific molecular targets are also discussed.

Vinhas, R., C. Correia, P. Ribeiro, A. Lourenco, A. Sousa, A. Fernandes, and P. Baptista. "GOLD NANOPROBES IN THE DIAGNOSTIC OF CHRONIC MYELOID LEUKEMIA: DETECTION OF THE E14A2 BCR-ABL TRANSCRIPT DIRECTLY IN RNA SAMPLES." Leukemia Research 39 (2015): S90. Abstract


Bernacka-Wojcik, Iwona, Hugo Aguas, Fabio Ferreira Carlos, Paulo Lopes, Pawel Jerzy Wojcik, Mafalda Nascimento Costa, Bruno Veigas, Rui Igreja, Elvira Fortunato, Pedro Viana Baptista, and Rodrigo Martins. "Single Nucleotide Polymorphism Detection Using Gold Nanoprobes and Bio-Microfluidic Platform With Embedded Micro lenses." Biotechnology and Bioengineering 112 (2015): 1210-1219. Abstract


Conde, Joao, Furong Tian, Yulan Hernandez, Chenchen Bao, Pedro V. Baptista, Daxiang Cui, Tobias Stoeger, and Jesus M. de la Fuente. "RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing." Nanoscale 7 (2015): 9083-9091. Abstract


McCully, Mark, Yulan Hernandez, Joao Conde, Pedro V. Baptista, Jesus M. de la Fuente, Andrew Hursthouse, David Stirling, and Catherine C. Berry. "Significance of the balance between intracellular glutathione and polyethylene glycol for successful release of small interfering RNA from gold nanoparticles." Nano Research 8 (2015): 3281-3292. Abstract


Child, Hannah Winifred, Yulan Hernandez, João Conde, Margaret Mullin, Pedro V. Baptista, Jesus Maria de la Fuente, and Catherine C. Berry. "Gold nanoparticle-siRNA mediated oncogene knockdown at RNA and protein level, with associated gene effects." NANOMEDICINE 10 (2015): 2513-2525. AbstractWebsite

Aims: RNAi is a powerful tool for gene silencing that can be used to reduce undesirable overexpression of oncogenes as a novel form of cancer treatment. However, when using RNAi as a therapeutic tool there is potential for associated gene effects. This study aimed to utilize gold nanoparticles to deliver siRNA into HeLa cells. Results: Knockdown of the c-myc oncogene by RNAi, at the RNA, protein and cell proliferation level was achieved, while also identifying associated gene responses. Discussion: The gold nanoparticles used in this study present an excellent delivery platform for siRNA, but do note associated gene changes. Conclusion: The study highlights the need to more widely assess the cell physiological response to RNAi treatment, rather than focus on the immediate RNA levels.

Conde, João, Alfredo Ambrosone, Yulán Hernandez, Furong Tian, Mark McCully, Catherine C. Berry, Pedro V. Baptista, and Claudia T. " 15 years on siRNA delivery: Beyond the State-of-the-Art on inorganic nanoparticles for RNAi therapeutics." NANO TODAY In Press (2015). Abstract

RNAi has always captivated scientists due to its tremendous power to modulate the phenotype of living organisms. This natural and powerful biological mechanism can now be harnessed to down-regulate specific gene expression in diseased cells; opening up endless opportunities. Since most of the conventional siRNA delivery methods are limited by a narrow therapeutic index and significant side and off-target effects, we are now in the dawn of a new age in gene therapy driven by nanotechnology vehicles for RNAi therapeutics. Here, we outlook the "do's and dont's" of the inorganic RNAi nanomaterials developed in the last 15 years and the different strategies employed are compared and scrutinized, offering important suggestions for the next 15.

Veigas, B., E. Fortunato, and P. V. Baptista. "Mobile based gold nanoprobe TB diagnostics for point-of-need." Methods in molecular biology (Clifton, N.J.) 1256 (2015): 41-56. Abstract


Restani, Rita B., Joao Conde, Rita F. Pires, Pedro Martins, Alexandra R. Fernandes, Pedro V. Baptista, and Vasco D. B. Bonifacio. "POxylated Polyurea Dendrimers: Smart Core-Shell Vectors with IC50 Lowering Capacity." MACROMOLECULAR BIOSCIENCE 15 (2015): 1045-1051. AbstractWebsite

The design and preparation of highly efficient drug delivery platforms using green methodologies is at the forefront of nanotherapeutics research. POxylated polyurea dendrimers are efficiently synthesized using a supercritical-assisted polymerization in carbon dioxide. These fluorescent, pH-responsive and water-soluble core-shell smart nanocarriers show low toxicity in terms of cell viability and absence of glutathione depletion, two of the major side effect limitations of current vectors. The materials are also found to act as good transfection agents, through a mechanism involving an endosomal pathway, being able to reduce 100-fold the IC50 of paclitaxel.

McCully, Mark, Yulan Hernandez, João Conde, Pedro V. Baptista, Jesus M. de la Fuente, Andrew Hursthouse, and David St. "The significance of the balance between intracellular glutathione and polyethylene glycol (PEG) for successful siRNA release from gold nanoparticles." Nano Research (2015). AbstractWebsite

The therapeutic promise of small interfering RNAs (siRNAs) for specific gene silencing is dependent on the
successful delivery of functional siRNAs to the cell cytoplasm. Their conjugation to an established delivery
platform, such as gold nanoparticles, offers a huge potential for treating diseases and advancing our
understanding of cellular processes. The success or failure is dependent on both the uptake of the nanoparticlesinto the cells and subsequent intracellular release of the functional siRNA. In this paper, utilising gold nanoparticle siRNA-mediated delivery against C-MYC, we aimed to determine if we could achieve knockdown in a cancer cell line with low levels of intracellular glutathione, and determine the influence, if any, of polyethylene glycol (PEG) ligand density on knockdown, with a view to determine the optimal nanoparticle
design to achieve C-MYC knockdown. We demonstrate that, regardless of the PEG density, knockdown in cells with relatively low glutathione levels can be achieved, and also the possible effect of steric hindrance in terms of PEG on the availability of the siRNA for cleavage in the intracellular environment. Gold nanoparticle uptake was demonstrated via transmission electron microscopy and mass spectroscopy, whilst knockdown was determined at the protein and physiological levels (cells in S-phase) by in-cell westerns and BrdU incorporation, respectively.

Larguinho, Miguel, Rafaela Canto, Milton Cordeiro, Pedro Pedrosa, Andreia Fortuna, Raquel Vinhas, and Pedro V. Baptista. "Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics." Expert Review of Molecular Diagnostics 15 (2015): 1355-1368. Abstract


Baptista, Pedro V. "Nanodiagnostics: leaving the research lab to enter the clinics?" Diagnosis 1 (2014): 305-309. AbstractWebsite

Nanotechnology has provided a plethora of valuable tools that can be applied for the detection of biomolecules and analytes relevant for diagnosis purposes – nanodiagnostics. This surging new field of molecular diagnostics has been revolutionizing laboratory procedures and providing new ways to assess disease biomarkers with increased sensitivity. While most of the reported nanodiagnostics systems are proof-of-concepts that demonstrate their efficacy in the lab, several nanodiagnostics platforms have already matured to a level that open the way for effective translation to the clinics. Nanodiagnostics platforms (e.g., gold nanoparticles containing systems) have been remarkably useful for the development of molecular diagnosis strategies for DNA/RNA detection and characterization, including systems suitable for point-of-care. How near are nanodiagnostics to go from the bench to the bedside?

Larguinho, Miguel, Daniela Correia, Mario S. Diniz, and Pedro V. Baptista. "Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels." Journal of Nanoparticle Research 16 (2014). Abstract


Veigas, Bruno, Alexandra R. Fernandes, and Pedro V. Baptista. "AuNPs for identification of molecular signatures of resistance." Frontiers in Microbiology 5 (2014). Abstract


Carlos, Fábio Ferreira, Orfeu Flores, Gonçalo Doria, and Pedro Viana Baptista. "Characterization of genomic SNP via colorimetric detection using a single gold nanoprobe." Analytical Biochemistry 465 (2014): 1-5. AbstractWebsite

Identification of specific nucleic acid sequences mediated by gold nanoparticles derivatized thiol-modified oligonucleotides (Au-nanoprobes) has been proven to be a useful tool in molecular diagnostics. Here, we demonstrate that, on optimization, detection may be simplified via the use of a single Au-nanoprobe to detect a single nucleotide polymorphism (SNP) in homo- or heterozygote condition. We validated this non-cross-linking approach through the analysis of 20 clinical samples using a single specific Au-nanoprobe for an SNP in the FTO (fat mass and obesity-associated) gene against direct DNA sequencing. Sensitivity, specificity, and limit of detection (LOD) were determined, and statistical differences were calculated by one-way analysis of variance (ANOVA) and a post hoc Tukey's test to ascertain whether there were any differences between Au-nanoprobe genotyped groups. For the first time, we show that the use of a single Au-nanoprobe can detect SNP for each genetic status (wild type, heterozygous, or mutant) with high degrees of sensitivity (87.50%) and specificity (91.67%).

Roma-Rodrigues, Catarina, Alexandra R. Fernandes, and Pedro Viana Baptista. "Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells." Biomed Research International (2014). Abstract


Pedrosa, Pedro, Bruno Veigas, Diana Machado, Isabel Couto, Miguel Viveiros, and Pedro V. Baptista. "Gold nanoprobes for multi loci assessment of multi-drug resistant tuberculosis." Tuberculosis 94 (2014): 332-337. AbstractWebsite

Tuberculosis, still one of the leading human infectious diseases, reported 8.7 million new cases in 2011 alone. Also, the increasing rate of multidrug-resistant tuberculosis (MDRTB) and its treatment difficulties pose a serious public health threat especially in developing countries. Resistance to isoniazid and rifampicin, first line antibiotics, is commonly associated with point mutations in katG, inhA and rpoB genes of Mycobacterium tuberculosis complex (MTBC). Therefore, the development of cheap, fast and simple molecular methods to assess susceptibility profiles would have a huge impact in the capacity of early diagnosis and treatment of MDRTB.

Gold nanoparticles functionalized with thiol-modified oligonucleotides (Au-nanoprobes) have shown the potential to provide a rapid and sensitive detection method for MTBC and single base mutations associated with antibiotic resistance, namely the characterization of the three most relevant codons in rpoB gene associated to rifampicin resistance. Here we extend the Au-nanoprobe approach towards discriminating specific mutations within inhA and rpoB genes in PCR amplified DNA from isolates. Using a multiplex PCR reaction for these two genes, it is possible to assess both loci in parallel, and extend the potential of the Au-nanoprobe method to MDRTB molecular characterization with special application in the most frequent Portuguese genotypes.

Conde, Joao, Jorge T. Dias, Valeria Grazu, Maria Moros, Pedro V. Baptista, and Jesus M. de la Fuente. "Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine." Frontiers in Chemistry 2 (2014). Abstract


Luis, Daniel V., Joana Silva, Ana Isabel Tomaz, Rodrigo F. M. de Almeida, Miguel Larguinho, Pedro V. Baptista, Luisa M. D. R. S. Martins, Telma F. S. Silva, Pedro M. Borralho, Cecilia M. P. Rodrigues, Antonio S. Rodrigues, Armando J. L. Pombeiro, and Alexandra R. Fernandes. "Insights into the mechanisms underlying the antiproliferative potential of a Co(II) coordination compound bearing 1,10-phenanthroline-5,6-dione: DNA and protein interaction studies." Journal of Biological Inorganic Chemistry 19 (2014): 787-803. Abstract


Baptista, Pedro Viana. "3h Gold nanobeacons: a potential nanotheranostics platform." Nanomedicine 9 (2014): 2247-2250. Abstract


Quaresma, Pedro, Ines Osorio, Goncalo Doria, Patricia A. Carvalho, Andre Pereira, Judith Langer, Joao Pedro Araujo, Isabel Pastoriza-Santos, Luis M. Liz-Marzan, Ricardo Franco, Pedro V. Baptista, and Eulalia Pereira. "Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection." Rsc Advances 4 (2014): 3659-3667. AbstractWebsite


Conde, Joao, Chenchen Bao, Daxiang Cui, Pedro V. Baptista, and Furong Tian. "Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics." Journal of Controlled Release 183 (2014): 87-93. Abstract


Conde, João, Miguel Larguinho, Ana Cordeiro, Luis R. Raposo, Pedro M. Costa, Susana Santos, Mário Diniz, Alexandra R. Fernandes, and Pedro Viana Baptista. "Gold-Nanobeacons for gene therapy: evaluation of genotoxicity, cell toxicity and proteome profiling analysis." Nanotoxicology 8 (2014): 521-532. AbstractWebsite

Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3′-Cy3 and 5′-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2-Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.