By Type: Journal Article

Daniela, Peixoto, Figueiredo Margarida, Malta Gabriela, Roma‐Rodrigues Catarina, Baptista Pedro V., Fernandes Alexandra R., Barroso Sónia, Carvalho Ana Luísa, Afonso Carlos A. M., Ferreira Luisa M., and Branco Paula S. "Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero‐Arylidene‐9(10H)‐Anthrone." European Journal of Organic ChemistryEuropean Journal of Organic Chemistry 2018 (2018): 545-549. AbstractWebsite

A new and never before reported hetero?arylidene?9(10H)?anthrone structure (4) was unexpectedly isolated on reaction of 1,2?dimethyl?3?ethylimidazolium iodide (2) and 9?anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally confirmed by X?ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed, indicating its applicability in biological systems. Compound 4 interacts with CT?DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity [Kb = 2.0?(±0.20)???105 m?1], which is 10?? higher than that described for doxorubicin [Kb = 3.2?(±0.23)???104 m?1]. Furthermore, compound 4 quenches the fluorescence emission of a GelRed?CT?DNA system with a quenching constant (KSV) of 3.3?(±0.3)???103 m?1 calculated by the Stern?Volmer equation.

Alves, Pedro Urbano, Raquel Vinhas, Alexandra R. Fernandes, Semra Zuhal Birol, Levent Trabzon, Iwona Bernacka-Wojcik, Rui Igreja, Paulo Lopes, Pedro Viana Baptista, Hugo Águas, Elvira Fortunato, and Rodrigo Martins. "Multifunctional microfluidic chip for optical nanoprobe based RNA detection – application to Chronic Myeloid Leukemia." Scientific Reports 8 (2018): 381. AbstractWebsite

Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.

Pedrosa, Pedro, Rita Mendes, Rita Cabral, Luisa M. D. R. S. Martins, Pedro V. Baptista, and Alexandra R. Fernandes. "Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells." Scientific Reports 8 (2018). Abstract

n/a

Svahn, Noora, Artur J. Moro, Catarina Roma-Rodrigues, Rakesh Puttreddy, Kari Rissanen, Pedro V. Baptista, Alexandra R. Fernandes, João Carlos Lima, and Laura Rodríguez. "The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes." Chemistry – A European Journal 24 (2018): 14654-14667. AbstractWebsite

Abstract A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3, with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2–10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50=2.3 μm) compared with colorectal carcinoma and normal human fibroblasts (IC50>100 μm), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N−H⋅⋅⋅π contacts as the main driving forces for the three-dimensional packing in these molecules.

Baptista, Pedro V., Matthew P. McCusker, Andreia Carvalho, Daniela A. Ferreira, Niamh M. Mohan, Marta Martins, and Alexandra R. Fernandes. "Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”." Frontiers in Microbiology 9 (2018): 1441. AbstractWebsite

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

Cordeiro, Mílton, Ana Rita Otrelo-Cardoso, Dmitri I. Svergun, Petr V. Konarev, João Carlos Lima, Teresa Santos-Silva, and Pedro Viana Baptista. "Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor." ACS Chemical BiologyACS Chemical Biology 13 (2018): 1235-1242. AbstractWebsite

n/a

McCully, Mark, Joao Conde, Pedro V. Baptista, Margaret Mullin, Matthew J. Dalby, and Catherine C. Berry. "Nanoparticle-antagomiR based targeting of miR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells." Plos One 13 (2018). Abstract

n/a

Vinhas, Raquel, Alexandra Lourenco, Susana Santos, Patricia Ribeiro, Madalena Silva, Aida Botelho de Sousa, Pedro V. Baptista, and Alexandra R. Fernandes. "A double Philadelphia chromosome-positive chronic myeloid leukemia patient, co-expressing P210(BCR-ABL1) and P195(BCR-ABL1) isoforms." Haematologica 103 (2018): E549-E552. Abstract

n/a

Ribeiro, A. P. C., S. Anbu, E. C. B. A. Alegria, A. R. Fernandes, P. V. Baptista, R. Mendes, A. S. Matias, M. Mendes, M. F. C. Guedes da Silva, and A. J. L. Pombeiro. "Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles." Biomedicine & Pharmacotherapy 101 (2018): 137-144. AbstractWebsite

n/a

Restani, Rita B., Rita F. Pires, Anna Tolmatcheva, Rita Cabral, V. Baptista, Pedro, Alexandra R. Fernandes, Teresa Casimiro, Vasco D. B. Bonifacio, and Ana Aguiar-Ricardo. "POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy." Chemistryopen 7 (2018): 772-779. Abstract

n/a

Mendes, Rita, Pedro Pedrosa, Joao C. Lima, Alexandra R. Fernandes, and Pedro V. Baptista. "Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles." Scientific Reports 7 (2017). Abstract

n/a

Carlos, F. F., B. Veigas, A. S. Matias, G. Doria, O. Flores, and P. V. Baptista. "Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms." Biotechnol Rep (Amst) 16 (2017): 21-25. AbstractWebsite

n/a

Vinhas, Raquel, Rita Mendes, Alexandra R. Fernandes, and Pedro V. Baptista. "Nanoparticles—Emerging Potential for Managing Leukemia and Lymphoma." Front. Bioeng. Biotechnol 5 (2017): 79. AbstractWebsite

Nanotechnology has become a powerful approach to improve the way we diagnose and treat cancer. In particular, nanoparticles possess unique features for enhanced sensitivity and selectivity for earlier detection of circulating cancer biomarkers. In vivo, nanoparticles enhance the therapeutic efficacy of anticancer agents when compared to conventional chemotherapy, improving vectorization and delivery, and helping to overcome drug resistance. Nanomedicine has been mostly focused on solid cancers due to take advantage from the enhanced permeability and retention (EPR) effect experienced by tissues in the close vicinity of tumors, which enhance nanomedicine’s accumulation and, consequently, improve efficacy. Nanomedicines for leukemia and lymphoma, where EPR effect is not a factor, are addressed differently from solid tumors. Nevertheless, nanoparticles have provided innovative approaches to simple and non-invasive methodologies for diagnosis and treatment in liquid tumors. In this review, we consider the state of the art on different types of nanoconstructs for the management of liquid tumors, from pre-clinical studies to clinical trials. We also discuss the advantages of nanoplatforms for theranostics and the central role played by nanoparticles in this combined strategy.

Coelho, Beatriz Jorge, Bruno Veigas, Hugo Aguas, Elvira Fortunato, Rodrigo Martins, Pedro Viana Baptista, and Rui Igreja. "A Digital Microfluidics Platform for Loop-Mediated Isothermal Amplification Detection." Sensors 17 (2017). Abstract

n/a

Coelho, Beatriz, Bruno Veigas, Elvira Fortunato, Rodrigo Martins, Hugo Aguas, Rui Igreja, and Pedro V. Baptista. "Digital Microfluidics for Nucleic Acid Amplification." Sensors 17 (2017). Abstract

n/a

Pedrosa, Pedro, Amelie Heuer-Jungemann, Antonios G. Kanaras, Alexandra R. Fernandes, and Pedro V. Baptista. "Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles." Journal of Nanobiotechnology 15 (2017). Abstract

n/a

Fernandes, Alexandra R., and Pedro V. Baptista. "Gene Silencing Using Multifunctionalized Gold Nanoparticles for Cancer Therapy." Methods in molecular biology (Clifton, N.J.) 1530 (2017): 319-336. Abstract

n/a

Fernandes, Alexandra R., Joao Jesus, Pedro Martins, Sara Figueiredo, Daniela Rosa, Luisa M. R. D. R. S. Martins, Maria Luisa Corvo, Manuela C. Carvalheiro, Pedro M. Costa, and Pedro V. Baptista. "Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents." Journal of Controlled Release 245 (2017): 52-61. Abstract

n/a

Roma-Rodrigues, Catarina, Francisca Pereira, Antonio P. Alves de Matos, Marta Fernandes, Pedro V. Baptista, and Alexandra R. Fernandes. "Smuggling gold nanoparticles across cell types - A new role for exosomes in gene silencing." Nanomedicine-Nanotechnology Biology and Medicine 13 (2017): 1389-1398. Abstract

n/a

Veigas, Bruno, Joana Pinto, Raquel Vinhas, Tomas Calmeiro, Rodrigo Martins, Elvira Fortunato, and Pedro Viana Baptista. "Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform." Biosensors & Bioelectronics 91 (2017): 788-795. Abstract

n/a

Roma-Rodrigues, Catarina, Luis Raposo, Rita Cabral, Fabiana Paradinha, Pedro V. Baptista, and Alexandra R. Fernandes. "Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: implications in cancer diagnostics and Therapy." Int. J. Mol. Sci. 18 (2017): 162. AbstractWebsite

Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

Raposo, L. R., C. Roma-Rodrigues, P. Faisca, M. Alves, J. Henriques, MC Carvalheiro, M. L. Corvo, P. V. Baptista, A. J. Pombeiro, and A. R. Fernandes. "Immortalization and characterization of a new canine mammary tumour cell line FR37-CMT." Veterinary and Comparative Oncology 15 (2017): 952-967. Abstract

n/a

Cordeiro, Milton, Lara Carvalho, Joana Silva, Leonor Saúde, Alexandra R. Fernandes, and Pedro V. Baptista. "Gold nanobeacons for tracking gene silencing in Zebrafish." Nanomaterials (2017). AbstractWebsite

The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP) mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest.

Raposo, L. R., C. Roma-Rodrigues, J. Jesus, L. M. D. R. S. Martins, A. J. Pombeiro, P. V. Baptista, and A. R. Fernandes. "Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(II) and Zn(II) compounds." Veterinary and Comparative Oncology 15 (2017): 1537-1542. Abstract

n/a