By Type: Journal Article

Ferreira, D., D. Fontinha, C. Martins, D. Pires, A. R. Fernandes, and P. V. Baptista. "Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics." Molecules 25 (2020). AbstractWebsite

n/a

Beola, L., L. Asín, C. Roma-Rodrigues, Y. Fernández-Afonso, R. M. Fratila, D. Serantes, S. Ruta, R. W. Chantrell, A. R. Fernandes, P. V. Baptista, J. M. de la Fuente, V. Grazú, and L. Gutiérrez. "The Intracellular Number of Magnetic Nanoparticles Modulates the Apoptotic Death Pathway after Magnetic Hyperthermia Treatment." ACS Appl Mater Interfaces 12 (2020): 43474-43487. AbstractWebsite

n/a

Raposo, L. R., A. Silva, D. Silva, C. Roma-Rodrigues, M. Espadinha, P. V. Baptista, M. M. M. Santos, and A. R. Fernandes. "Exploiting the antiproliferative potential of spiropyrazoline oxindoles in a human ovarian cancer cell line." Bioorg Med Chem 30 (2020): 115880. AbstractWebsite

n/a

Alves-Barroco, C., L. Rivas-García, A. R. Fernandes, and P. V. Baptista. "Tackling Multidrug Resistance in Streptococci - From Novel Biotherapeutic Strategies to Nanomedicines." Front Microbiol 11 (2020): 579916. AbstractWebsite

n/a

Kordestani, N., H. A. Rudbari, A. R. Fernandes, L. R. Raposo, P. V. Baptista, D. Ferreira, G. Bruno, G. Bella, R. Scopelliti, J. D. Braun, D. E. Herbert, and O. Blacque. "Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes." ACS Comb Sci 22 (2020): 89-99. AbstractWebsite

n/a

Roma-Rodrigues, C., G. Malta, D. Peixoto, LM Ferreira, P. V. Baptista, A. R. Fernandes, and P. S. Branco. "Synthesis of new hetero-arylidene-9(10H)-anthrone derivatives and their biological evaluation." Bioorg Chem 99 (2020): 103849. AbstractWebsite

n/a

Oliveira, B. B., B. Veigas, F. F. Carlos, A. Sánchez-Melsió, J. L. Balcázar, C. M. Borrego, and P. V. Baptista. "Water safety screening via multiplex LAMP-Au-nanoprobe integrated approach." Sci Total Environ 741 (2020): 140447. AbstractWebsite

n/a

Oliveira, B., B. Veigas, A. R. Fernandes, H. Águas, R. Martins, E. Fortunato, and P. V. Baptista. "Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers." Sensors (Basel) 20 (2020). AbstractWebsite

n/a

Roma-Rodrigues, C., L. Rivas-García, P. V. Baptista, and A. R. Fernandes. "Gene Therapy in Cancer Treatment: Why Go Nano?" Pharmaceutics 12 (2020). AbstractWebsite

n/a

Marques, A., B. Veigas, A. Araújo, B. Pagará, P. V. Baptista, H. Águas, R. Martins, and E. Fortunato. "Paper-Based SERS Platform for One-Step Screening of Tetracycline in Milk." Sci Rep 9 (2019): 17922. AbstractWebsite

n/a

Pedrosa, Pedro, Luísa M. Corvo, Margarida Ferreira-Silva, Pedro Martins, Manuela Colla Carvalheiro, Pedro M. Costa, Carla Martins, L. M. D. R. S. Martins, Pedro V. Baptista, and Alexandra R. Fernandes. "Targeting Cancer Resistance via Multifunctional Gold Nanoparticles." International Journal of Molecular Sciences 20 (2019). AbstractWebsite

Resistance to chemotherapy is a major problem facing current cancer therapy, which is continuously aiming at the development of new compounds that are capable of tackling tumors that developed resistance toward common chemotherapeutic agents, such as doxorubicin (DOX). Alongside the development of new generations of compounds, nanotechnology-based delivery strategies can significantly improve the in vivo drug stability and target specificity for overcoming drug resistance. In this study, multifunctional gold nanoparticles (AuNP) have been used as a nanoplatform for the targeted delivery of an original anticancer agent, a Zn(II) coordination compound [Zn(DION)2]Cl2 (ZnD), toward better efficacy against DOX-resistant colorectal carcinoma cells (HCT116 DR). Selective delivery of the ZnD nanosystem to cancer cells was achieved by active targeting via cetuximab, NanoZnD, which significantly inhibited cell proliferation and triggered the death of resistant tumor cells, thus improving efficacy. In vivo studies in a colorectal DOX-resistant model corroborated the capability of NanoZnD for the selective targeting of cancer cells, leading to a reduction of tumor growth without systemic toxicity. This approach highlights the potential of gold nanoformulations for the targeting of drug-resistant cancer cells.

Almeida, J., C. Roma-Rodrigues, A. G. Mahmoud, M. F. C. Guedes da Silva, A. J. L. Pombeiro, D.RS L. M. Martins, P. V. Baptista, and A. R. Fernandes. "Structural characterization and biological properties of silver(I) tris(pyrazolyl)methane sulfonate." J Inorg Biochem 199 (2019): 110789. AbstractWebsite

n/a

Jesus, Ana R., Mario R. C. Soromenho, Luis R. Raposo, Jose M. S. S. Esperanca, Pedro V. Baptista, Alexandra R. Fernandes, and Patricia M. Reis. "Enhancement of water solubility of poorly water-soluble drugs by new biocompatible N-acetyl amino acid N-alkyl cholinium-based ionic liquids." European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V (2019). Abstract

n/a

Sutradhar, M., E. C. B. A. Alegria, F. Ferretti, L. R. Raposo, M. F. C. Guedes da Silva, P. V. Baptista, A. R. Fernandes, and A. J. L. Pombeiro. "Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers." J Inorg Biochem 200 (2019): 110811. AbstractWebsite

n/a

Roma-Rodrigues, C., A. R. Fernandes, and P. V. Baptista. "Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles." Int J Nanomedicine 14 (2019): 6843-6854. AbstractWebsite

n/a

Kourmentza, C., D. Araujo, C. Sevrin, C. Roma-Rodriques, J. Lia Ferreira, F. Freitas, M. Dionisio, P. V. Baptista, A. R. Fernandes, C. Grandfils, and M. A. M. Reis. "Occurrence of non-toxic bioemulsifiers during polyhydroxyalkanoate production by Pseudomonas strains valorizing crude glycerol by-product." Bioresour Technol 281 (2019): 31-40. AbstractWebsite

n/a

Roma-Rodrigues, C., R. Mendes, P. V. Baptista, and A. R. Fernandes. "Targeting Tumor Microenvironment for Cancer Therapy." Int J Mol Sci 20 (2019). AbstractWebsite

n/a

Veigas, B., A. Matias, T. Calmeiro, E. Fortunato, A. R. Fernandes, and P. V. Baptista. "Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis." Analyst 144 (2019): 3613-3619. AbstractWebsite

n/a

Roma-Rodrigues, Catarina, Inês Pombo, Luís Raposo, Pedro Pedrosa, Alexandra R. Fernandes, and Pedro V. Baptista. "Nanotheranostics Targeting the Tumor Microenvironment." Front. Bioeng. Biotechnol. 7 (2019): 197. AbstractWebsite

Cancer is considered the most aggressive malignancy to humans, and definitely the major cause of death worldwide. Despite the different and heterogenous presentation of the disease, there are pivotal cell elements involved in proliferation, differentiation, and immortalization, and ultimately the capability to evade treatment strategies. This is of utmost relevance when we are just beginning to grasp the complexity of the tumor environment and the molecular “evolution” within. The tumor micro-environment (TME) is thought to provide for differentiation niches for clonal development that results in tremendous cancer heterogeneity. To date, conventional cancer therapeutic strategies against cancer are failing to tackle the intricate interplay of actors within the TME. Nanomedicine has been proposing innovative strategies to tackle this TME and the cancer cells that simultaneously provide for biodistribution and/or assessment of action. These nanotheranostics systems are usually multi-functional nanosystems capable to carry and deliver active cargo to the site of interest and provide diagnostics capability, enabling early detection, and destruction of cancer cells in a more selective way. Some of the most promising multifunctional nanosystems are based on gold nanoparticles, whose physic-chemical properties have prompt for the development of multifunctional, responsive nanomedicines suitable for combinatory therapy and theranostics. Herein, we shall focus on the recent developments relying on the properties of gold nanoparticles as the basis for nanotheranostics systems against the heterogeneity within the TME.

Pedrosa, P., M. L. Corvo, M. Ferreira-Silva, P. Martins, MC Carvalheiro, P. M. Costa, C. Martins, D.RS L. M. Martins, P. V. Baptista, and A. R. Fernandes. "Targeting Cancer Resistance via Multifunctional Gold Nanoparticles." Int J Mol Sci 20 (2019). AbstractWebsite

n/a

Das, Kuheli, Amitabha Datta, Chiara Massera, Catarina Roma-Rodrigues, Mariana Barroso, Pedro V. Baptista, and Alexandra R. Fernandes. "Structural aspects of a trimetallic CuII derivative: cytotoxicity and anti-proliferative activity on human cancer cell lines." Journal of Coordination Chemistry 72 (2019): 920-940. AbstractWebsite

n/a

Santos, Miguel M., Luís R. Raposo, Gonçalo V. S. M. Carrera, Alexandra Costa, Madalena Dionísio, Pedro V. Baptista, Alexandra R. Fernandes, and Luís C. Branco. "Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug." ChemMedChem 14 (2019): 907-911. AbstractWebsite

Abstract Herein we report the synthesis of novel ionic liquids (ILs) and organic salts by combining ibuprofen as anion with ammonium, imidazolium, or pyridinium cations. The methodology consists of an acid–base reaction of neutral ibuprofen with cation hydroxides, which were previously prepared by anion exchange from the corresponding halide salts with Amberlyst A-26(OH). In comparison with the parent drug, these organic salts display higher solubility in water and biological fluids and a smaller degree of polymorphism, which in some cases was completely eliminated. With the exception of [C16Pyr][Ibu] and [N1,1,2,2OH1][Ibu], the prepared salts did not affect the viability of normal human dermal fibroblasts or ovarian carcinoma (A2780) cells. Therefore, these ibuprofen-based ionic liquids may be very promising lead candidates for the development of effective formulations of this drug.

Oliveira, Hélder, Catarina Roma-Rodrigues, Ana Santos, Bruno Veigas, Natércia Brás, Ana Faria, Conceição Calhau, Victor de Freitas, Pedro V. Baptista, Nuno Mateus, Alexandra R. Fernandes, and Iva Fernandes. "GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach." Scientific Reports 9 (2019): 789. AbstractWebsite

Anthocyanins may protect against a myriad of human diseases. However few studies have been conducted to evaluate their bioavailability so their absorption mechanism remains unclear. This study aimed to evaluate the role of two glucose transporters (GLUT1 and GLUT3) in anthocyanins absorption in the human gastric epithelial cells (MKN-28) by using gold nanoparticles to silence these transporters. Anthocyanins were purified from purple fleshed sweet potatoes and grape skin. Silencing of GLUT1 and/or GLUT3 mRNA was performed by adding AuNP@GLUT1 and/or AuNP@GLUT3 to MKN-28 cells. Downregulation of mRNA expression occurred concomitantly with the reduction in protein expression. Malvidin-3-O-glucoside (Mv3glc) transport was reduced in the presence of either AuNP@GLUT1 and AuNP@GLUT3, and when both transporters were blocked simultaneously. Peonidin-3-(6′-hydroxybenzoyl)-sophoroside-5-glucoside (Pn3HBsoph5glc) and Peonidin-3-(6′-hydroxybenzoyl-6″-caffeoyl)-sophoroside-5-glucoside (Pn3HBCsoph5glc) were assayed to verify the effect of the sugar moiety esterification at glucose B in transporter binding. Both pigments were transported with a lower transport efficiency compared to Mv3glc, probably due to steric hindrance of the more complex structures. Interestingly, for Pn3HBCsoph5glc although the only free glucose is at C5 and the inhibitory effect of the nanoparticles was also observed, reinforcing the importance of glucose on the transport regardless of its position or substitution pattern. The results support the involvement of GLUT1 and GLUT3 in the gastric absorption of anthocyanins.

Baptista, Pedro V., Matthew P. McCusker, Andreia Carvalho, Daniela A. Ferreira, Niamh M. Mohan, Marta Martins, and Alexandra R. Fernandes. "Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”." Frontiers in Microbiology 9 (2018): 1441. AbstractWebsite

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.