By Type: Journal Article

Coupling an universal primer to SBE combined spectral codification strategy for single nucleotide polymorphism analysis, Cordeiro, Milton, Giestas Letícia, Lima {João C. }, and Baptista Pedro , Journal of Biotechnology, oct, Volume 168, Number 1, p.90–94, (2013) Abstract

We previously reported a strategy that combines Forster resonance energy transfer (FRET) based spectral codification with a single base extension (SBE) reaction for single nucleotide sequence discrimination in solution. This strategy is capable of unequivocally detect the allele variants present in solution. To extend the use of this tool to any locus of interest, it would be required the development of an universal approach capable of combining a sequence specific SBE primer to an universal sequence labeled and optimized for spectral codification.Here, we extend this concept to a general strategy by means of a labeled universal oligonucleotide primer (donor), a sequence specific primer that allows for incorporation of the complementary acceptor labeled ddNTP, which allows discrimination the allele variant in the sample via the unambiguous FRET signature of the donor/acceptor pair

Bio-microfluidic platform for gold nanoprobe based DNA detection-application to Mycobacterium tuberculosis, Bernacka-Wójcik, Iwona, Lopes {Paulo A. }, Vaz {Ana Catarina}, Veigas {Bruno Miguel Ribeiro}, Wojcik {Pawel Jerzy}, Simões Pedro, Barata David, Fortunato {Elvira Maria Correia}, Baptista {Pedro Miguel Ribeiro Viana}, Águas {Hugo Manuel Brito}, and de Martins {Rodrigo Ferrão Paiva} , Biosensors & Bioelectronics, oct, Volume 48, p.87–93, (2013) Abstract

We have projected and fabricated a microfluidic platform for DNA sensing that makes use of an optical colorimetric detection method based on gold nanoparticles. The platform was fabricated using replica moulding technology in PDMS patterned by high-aspect-ratio SU-8 moulds. Biochips of various geometries were tested and evaluated in order to find out the most efficient architecture, and the rational for design, microfabrication and detection performance is presented. The best biochip configuration has been successfully applied to the DNA detection of Mycobacterium tuberculosis using only 3 mu l on DNA solution (i.e. 90 ng of target DNA), therefore a 20-fold reduction of reagents volume is obtained when compared with the actual state of the art.

Invivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models, Conde, João, Tian Furong, Hernández Yulán, Bao Chenchen, Cui Daxiang, Janssen {Klaus Peter}, Ibarra Ricardo} {M., Baptista {Pedro V. }, Stoeger Tobias, and {de la Fuente} {Jesús M. } , Biomaterials, oct, Volume 34, Number 31, p.7744–7753, (2013) Abstract

Up to now, functionalized gold nanoparticles have been optimized as an effective intracellular invitro delivery vehicle for siRNAs to interfere with the expression of specific genes by selective targeting, and provide protection against nucleases. Few examples however of suchlike invivo applications have been described so far. In this study, we report the use of siRNA/RGD gold nanoparticles capable of targeting tumor cells in a lung cancer syngeneic orthotopic murine model. Therapeutic RGD-nanoparticle treatment resulted in successful targeting evident from significant c-myc oncogene down-regulation followed by tumor growth inhibition and prolonged survival of lung tumor bearing mice, possibly via αvβ3 integrin interaction. Our results suggest that RGD gold nanoparticles-mediated delivery of siRNA by intratracheal instillation in mice leads to successful suppression of tumor cell proliferation and respective tumor size reduction. These results reiterate the capability of functionalized gold nanoparticles for targeted delivery of siRNA to cancer cells towards effective silencing of the specific target oncogene. What is more, we demonstrate that the gold-nanoconjugates trigger a complex inflammatory and immune response that might promote the therapeutic effect of the RNAi to reduce tumor size with low doses of siRNA.

Plastic Compatible Sputtered Ta2O5 Sensitive Layer for Oxide Semiconductor TFT Sensors, Branquinho, Rita, {Vaz Pinto} Joana, Busani {Tito Livio}, Barquinha {Pedro Miguel Cândido}, Pereira {Luis Miguel Nunes}, Baptista {Pedro Miguel Ribeiro Viana}, de Martins {Rodrigo Ferrão Paiva}, and Fortunato {Elvira Maria Correia} , Journal Of Display Technology, sep, Volume 9, Number 9, p.723–728, (2013) Abstract

The effect of post-deposition annealing temperature on the pH sensitivity of room temperature RF sputtered Ta2O5 was investigated. Structural and morphological features of these films were analyzed before and after annealing at various temperatures. The deposited films are amorphous up to 600 degrees C and crystallize at 700 degrees C in an orthorhombic phase. Electrolyte-insulator-semiconductor (EIS) field effect based sensors with an amorphous Ta2O5 sensing layer showed pH sensitivity above 50 mV/pH. For sensors annealed above 200 degrees C pH sensitivity decreased with increasing temperature. Stabilized sensor response and maximum pH sensitivity was achieved after low temperature annealing at 200 degrees C, which is compatible with the use of polymeric substrates and application as sensitive layer in oxides TFT-based sensors.

Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events, Conde, João, Rosa João, {de la Fuente} {Jesús M. }, and Baptista {Pedro V. } , Biomaterials, mar, Volume 34, Number 10, p.2516–2523, (2013) Abstract

The potential of a single molecular nanoconjugate to intersect all RNA pathways: from gene specific downregulation to silencing the silencers, i.e. siRNA and miRNA pathways, is demonstrated. Gold-nanobeacons are capable of efficiently silencing single gene expression, exogenous siRNA and endogenous miRNAs while yielding a quantifiable fluorescence signal directly proportional to the level of silencing. The silencing potential is comparable to that of traditional siRNA but the same nanoconjugates structure is also capable of reversing the effect of an exogenous siRNA. We further demonstrate the Gold-nanobeacons' efficiency at targeting and silencing miR-21, an endogenous miRNA involved in cancer development, which could become a valid nanotheranostics approach. Again, expression of miR-21 was inhibited with concomitant increase of the Au-nanobeacons' fluorescence that can be used to assess the silencing effect. This way, a single nanostructure can be used to intersect all RNA regulatory pathways while allowing for direct assessment of effective silencing and cell localization via a quantifiable fluorescence signal, making cancer nanotheranostics possible.

Association of FTO and PPARG polymorphisms with obesity in Portuguese women., Baptista, {Pedro Miguel Ribeiro Viana} , Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, jan, Volume 6, Number NA, p.241–245, (2013) Abstract
n/a
Cancer Nanotechnology: Prospects for Cancer Diagnostics and Therapy - An Update on Novel Molecular Players, de Fernandes, {Maria Alexandra Núncio Carvalho Ramos}, and Baptista {Pedro Miguel Ribeiro Viana} , Current Cancer Therapy Reviews, jan, Volume 9, Number NA, p.1, (2013) Abstract

Nanotechnology has emerged as a {"}disruptive technology{"} that may provide researchers with new and innovativeways to diagnose, treat and monitor cancer. In fact, nanomedicine approaches have delivered several strategies, suchas new imaging agents, real-time assessments of therapeutic and surgical efficacy, multifunctional, targeted devices capableof bypassing biological barriers to target and silence specific pathways in tumours. Of particular interest, has been theincreased capability to deliver multiple therapeutic agents directly to bulk cancer cells and cancer stem cells that play acritical role in cancer growth and metastasis. These multifunctional targeted nanoconjugates are also capable of avoidingcancer resistance and monitor predictive molecular changes that open the path for preventive action against pre-cancerouscells, minimizing costs and incidence of relapses. A myriad of nanoconjugates with effective silencing and site-targetingmoieties can be developed by incorporating a diverse selection of targeting, diagnostic, and therapeutic components. Adiscussion of the integrative effort of nanotechnology systems with recent developments of biomolecular interactions incancer progression is clearly required. Here, we will update the state of the art related to the development and applicationsof nanoscale platforms and novel biomolecular players in cancer diagnosis, imaging and treatment.

Fast nucleotide identification through fingerprinting using gold nanoparticle-based surface-assisted laser desorption/ionisation, Capelo, {José Luis}, and Baptista {Pedro Miguel Ribeiro Viana} , Talanta, jan, Volume 105, Number NA, p.417–21, (2013) Abstract

We report a method centred on gold nanoparticle-based surface-assisted laser desorption/ionisation for analysis of deoxynucleotides and alkylated nucleobases. Gold nanoparticles allow for enhanced analysis capability by eliminating undesired signature peaks; thus more elegant mass spectra can be attained that allow identification by nucleotide mass fingerprint. The resulting fingerprinting patterns on the spectra are compared and associated with the presence of different nucleotides in the sample. This method can be easily extended to modified nucleotides implicated in genome lesions due to exposure to environment chemicals, such as DNA adducts (e.g. guanine adducts). The use of gold nanoparticles for surface-assisted laser desorption/ionisation can be an useful tool to resolve common issues of background noise when analysing nucleic acids samples.

The chemistry and biology of gold nanoparticle-mediated photothermal therapy: promises and challenges, Baptista, {Pedro Miguel Ribeiro Viana} , Nano LIFE, jan, Volume 03, Number 03, p.nr. 1330001, (2013) Abstract

Under laser radiation, cells labeled with gold nanoparticles (AuNPs) are believed to suffer thermal damage due to the transfer of the absorbed light from theAuNPsto the cells. This process, which involves complex mechanisms such as the rapid electron–phonon decay in theAuNPs, followed by phonon–phonon relaxation, culminates in the localized heating of both theAuNPsand the cells, setting the rational for the use of these nanostructures, under laser light, in cancer photothermal therapy (PTT). Here, we discuss the chemical and biological aspects of this promising new therapeutic approach, including the advantages over conventional cancer therapies and the challenges that scientists still need to overcome to progress toward translation research.Read More:http://www.worldscientific.com/doi/abs/10.1142/S179398441330001X

Nanomaterials for reversion of multidrug resistance in cancer: a new hope for an old idea?, Conde, João, {de la Fuente} {Jesus M. }, and Baptista {Pedro Viana} , Frontiers in Pharmacology, Volume 4, (2013) Abstract
n/a
Nanoparticle drug delivery systems: Recent patents and applications in nanomedicine, Martins, Pedro, Rosa Daniela, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Recent Patents on Nanomedicine, Volume 3, Number 2, p.105–118, (2013) Abstract

Traditional methods of drug delivery present several drawbacks, mainly due to off-target effects that may originate severe side and toxic effect to healthy tissues. Parallel to the development of novel more effective drugs, particular effort has been dedicated to develop and optimize drug delivery vehicles capable of specifically targeting the required tissue/organ and to deliver the cargo only where and when it is needed. New drug delivery systems based on nanoscale devices showing new and improved pharmacokinetic and pharmacodynamics properties like enhanced bioavailability, high drug loading or systemic stability have surged in the past decade as promising solutions to the required therapeutic efficacy. Amongst these nanoscale vectors, nanoparticles for drug delivery, such as polymeric, lipidbased, ceramic or metallic nanoparticles, have been at the forefront of pharmaceutical development. The interest in nanomedicine for treatment and diagnosis is clearly reflected on the increasing number of publications and issued patents every year. Here, we provide a broad overview of novel nanoparticle based drug delivery systems, ranging from polymeric systems to metal nanoparticles, while simultaneously listing the most relevant related patents.

Nanotechnology for cancer diagnostics and therapy - an update on novel molecular players, Fernandes, {Alexandra R. }, and Baptista {Pedro Viana} , Current Cancer Therapy Reviews, Volume 9, Number 3, p.164–172, (2013) Abstract

Nanotechnology has emerged as a {"}disruptive technology{"} that may provide researchers with new and innovative ways to diagnose, treat and monitor cancer. In fact, nanomedicine approaches have delivered several strategies, such as new imaging agents, real-time assessments of therapeutic and surgical efficacy, multifunctional, targeted devices capable of bypassing biological barriers to target and silence specific pathways in tumours. Of particular interest, has been the increased capability to deliver multiple therapeutic agents directly to bulk cancer cells and cancer stem cells that play a critical role in cancer growth and metastasis. These multifunctional targeted nanoconjugates are also capable of avoiding cancer resistance and monitor predictive molecular changes that open the path for preventive action against pre-cancerous cells, minimizing costs and incidence of relapses. A myriad of nanoconjugates with effective silencing and site-targeting moieties can be developed by incorporating a diverse selection of targeting, diagnostic, and therapeutic components. A discussion of the integrative effort of nanotechnology systems with recent developments of biomolecular interactions in cancer progression is clearly required. Here, we will update the state of the art related to the development and applications of nanoscale platforms and novel biomolecular players in cancer diagnosis, imaging and treatment.

Modification of plasmid DNA topology by histone-mimetic gold nanoparticles, Conde, João, Baptista {Pedro V. }, Hernández Yulan, Sanz Vanesa, and {de la Fuente} {Jesus M. } , Nanomedicine, nov, Volume 7, Number 11, p.1657–1666, (2012) Abstract

Aims: Our aim is to explore whether gold nanoparticles (AuNPs) functionalized with a carboxylated polyethylene glycol (PEG) and protamine (AuNP@PEG@Prot) can modulate - enhance or restrain - DNA condensation, altering DNA conformation and inducing structural changes. Understanding how these nanoconjugates modulate DNA structure, size and shape of DNA condensates, and enable control over the resulting 3D structures is of major biological and therapeutic importance. Materials & methods: Citrate-AuNPs were covered with a dense layer of a hetero-functional octa(ethylene glycol) (SH-EG(8)-COOH). Conjugation of protamine to the AuNP@PEG was achieved by taking advantage of the carboxylated surface previously generated on the surface of the NP and the remaining amino groups from the protamine, using carbodiimide and N-hydroxysulfosuccinimide coupling reactions. Results & conclusion: AuNP@PEG@Prot modulates the structure and topology of DNA, not only for condensation, but also for decondensation, via formation of higher quantities of dimers and multimers, when compared with AuNP@PEG and free protamine.

Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing, Conde, João, Ambrosone Alfredo, Sanz Vanesa, Hernandez Yulan, Marchesano Valentina, Tian Furong, Child Hannah, Berry {Catherine C. }, Ibarra Ricardo} {M., Baptista {Pedro V. }, Tortiglione Claudia, and {de la Fuente} {Jesus M. } , ACS Nano, sep, Volume 6, Number 9, p.8316–8324, (2012) Abstract

Over the past decade, the capability of double-stranded RNAs to interfere with gene expression has driven new therapeutic approaches. Since small interfering RNA (siRNAs, 21 base pair double-stranded RNA) was shown to be able to elicit RNA interference (RNAi), efforts were directed toward the development of efficient delivery systems to preserve siRNA bioactivity throughout the delivery route, from the administration site to the target cell. Here we provide evidence of RNAi triggering, specifically silencing c-myc protooncogene, via the synthesis of a library of novel multifunctional gold nanoparticles (AuNPs). The efficiency of the AuNPs is demonstrated using a hierarchical approach including three biological systems of increasing complexity: in vitro cultured human cells, in vivo invertebrate (freshwater polyp, Hydra), and in vivo vertebrate (mouse) models. Our synthetic methodology involved fine-tuning of multiple structural and functional moieties. Selection of the most active functionalities was assisted step-by-step through functional testing that adopted this hierarchical strategy. Merging these chemical and biological approaches led to a safe, nonpathogenic, self-tracking, and universally valid nanocarrier that could be exploited for therapeutic RNAi.

Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles, Sanz, Vanesa, Conde João, Hernández Yulán, Baptista {Pedro V. }, Ibarra {Manuel R. }, and {de la Fuente} {Jesús M. } , Journal Of Nanoparticle Research, jun, Volume 14, Number 6, (2012) Abstract

The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs (∼14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

Gold-nanobeacons for real-time monitoring of RNA synthesis, Rosa, João, Conde João, {de la Fuente} {Jesus M. }, Lima {João C. }, and Baptista {Pedro V. } , Biosensors & Bioelectronics, jun, Volume 36, Number 1, p.161–167, (2012) Abstract

Measuring RNA synthesis and, when required, the level of inhibition, is crucial towards the development of practical strategies to evaluate silencing efficiency of gene silencing approaches. We developed a direct method to follow RNA synthesis in real time based on gold nanoparticles (AuNPs) functionalized with a fluorophore labeled hairpin-DNA, i.e. gold-nanobeacon (Au-nanobeacon). Under hairpin configuration, proximity to gold nanoparticles leads to fluorescence quenching; hybridization to a complementary target restores fluorescence emission due to the Au-nanobeacons' conformational reorganization that causes the fluorophore and the AuNP to part from each other, yielding a quantitative response. With this reporter Au-nanobeacon we were able to measure the rate of in vitro RNA synthesis ( 10.3. fmol of RNA per minute). Then, we designed a second Au-nanobeacon targeting the promoter sequence (inhibitor) so as to inhibit transcription whilst simultaneously monitor the number of promoters being silenced. Using the two Au-nanobeacons in the same reaction mixture, we are capable of quantitatively assess in real time the synthesis of RNA and the level of inhibition.The biosensor concept can easily be extended and adapted to situations when real-time quantitative assessment of RNA synthesis and determination of the level of inhibition are required. In fact, this biosensor may assist the in vitro evaluation of silencing potential of a given sequence to be later used for in vivo gene silencing.

Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis., Machado, D., dos Couto {Isabel Maria Santos Leitão}, Perdigão João, Rodrigues Liliana, Portugal Isabel, Baptista Pedro, Veigas Bruno, Amaral Leonard, and Bettencourt {Miguel Viveiros} , PLoS ONE, apr, Volume 7, Number 4, (2012) Abstract
n/a
Multifunctional gold nanoparticles for gene silencing, Sanz, Vanesa, Conde João, Ambrosone Alfredo, Hernandez Yulan, Marchesasno Valentina, Estrada {Giovani G. }, Ibarra {Manuel R. }, Baptista {Pedro V. }, Tian Furong, Tortiglione Claudia, and {de la Fuente} {Jesus M. } , Abstracts Of Papers Of The American Chemical Society, mar, Volume 243, (2012) Abstract
n/a
Noble metal nanoparticles for biosensing applications, c}alo Doria, Gon{\c, Conde João, Veigas Bruno, Giestas Leticia, Almeida Carina, c}ão Maria Assun{\c, Rosa João, and Baptista {Pedro V. } , Sensors, feb, Volume 12, Number 2, p.1657–1687, (2012) Abstract

In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies-from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory.

Could gold nanoprobes be an important tool in cancer diagnostics?, Baptista, {Pedro Miguel Ribeiro Viana} , Expert Review Of Molecular Diagnostics, jan, Volume 12, Number 6, p.541–3, (2012) Abstract
n/a
Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection, Baptista, {Pedro Miguel Ribeiro Viana}, and Franco Ricardo , Analytical and Bioanalytical Chemistry, jan, Volume 402, Number 3, p.1019–27, (2012) Abstract

The development of rapid detection assays for malaria diagnostics is an area of intensive research, as the traditional microscopic analysis of blood smears is cumbersome and requires skilled personnel. Here, we describe a simple and sensitive immunoassay that successfully detects malaria antigens in infected blood cultures. This homogeneous assay is based on the fluorescence quenching of cyanine 3B (Cy3B)-labeled recombinant Plasmodium falciparum heat shock protein 70 (PfHsp70) upon binding to gold nanoparticles (AuNPs) functionalized with an anti-Hsp70 monoclonal antibody. Upon competition with the free antigen, the Cy3B-labeled recombinant PfHsp70 is released to solution resulting in an increase of fluorescence intensity. Two types of AuNP-antibody conjugates were used as probes, one obtained by electrostatic adsorption of the antibody on AuNPs surface and the other by covalent bonding using protein cross-linking agents. In comparison with cross-linked antibodies, electrostatic adsorption of the antibodies to the AuNPs surfaces generated conjugates with increased activity and linearity of response, within a range of antigen concentration from 8.2 to 23.8 μg.mL(-1). The estimated LOD for the assay is 2.4 μg.mL(-1) and the LOQ is 7.3 μg.mL(-1). The fluorescence immunoassay was successfully applied to the detection of antigen in malaria-infected human blood cultures at a 3% parasitemia level, and is assumed to detect parasite densities as low as 1,000 parasites.μL(-1).

RNA quantification with gold nanoprobes for cancer diagnostics, Baptista, {Pedro Miguel Ribeiro Viana} , Clinics In Laboratory Medicine, jan, Volume 32, Number 1, p.1–13, (2012) Abstract
n/a
Using Au-nanoprobes por point-of-need diagnostics of TB., Baptista, Pedro, Veigas {Bruno Miguel Ribeiro}, Portugal Isabel, Couto I., and Viveiros M. , Magazine da Sociedade Portuguesa de Microbiologia, jan, Volume 2012, Number 1, (2012) Abstract

Tuberculosis remains one of the most serious infectious diseases worldwide requiring new tools to circumvent current molecular diagnostics limitations. Nanodiagnostics, i.e. nanotechnology based diagnostics, may do just that by decreasing the time needed for the molecular characterisation of the infecting agent, and allowing for miniaturisation and portability for point-of-need adapted to remote regions without suitable lab equipment.

Enhancement of antibiotic effect via gold: silver-alloy nanoparticles, dos} Santos, {Maria Margarida Moreira, Queiroz {Margarida João}, and Baptista {Pedro Miguel Ribeiro Viana} , Journal Of Nanoparticle Research, Volume 14, Number 5, p.859–867, (2012) Abstract

A strategy for the development of novel antimicrobials is to combine the stability and pleiotropic effects of inorganic compounds with the specificity and efficiency of organic compounds, such as antibiotics. Here we report on the use of gold:silver-alloy (Au:Ag-alloy) nanoparticles, obtained via a single-step citrate co-reduction method, combined to conventional antibiotics to enhance their antimicrobial effect on bacteria. Addition of the alloy nanoparticles considerably decreased the dose of antibiotic necessary to show antimicrobial effect, both for bacterial cells growing in rich medium in suspension and for bacterial cells resting in a physiological buffer on a humid cellulose surface. The observed effect was more pronounced than the sum of the individual effects of the nanoparticles and antibiotic. We demonstrate the enhancement effect of Au:Ag-alloy nanoparticles with a size distribution of 32.5±7.5nm mean diameter on the antimicrobial effect of (i) kanamycin onEscherichia coli(Gram-negative bacterium), and (ii) a β-lactam antibiotic on both a sensitive and resistant strain ofStaphylococcus aureus(Gram-positive bacterium). Together, these results may pave the way for the combined use of nanoparticle–antibiotic conjugates towards decreasing antibiotic resistance currently observed for certain bacteria and conventional antibiotics.

Nanophotonics for molecular diagnostics and therapy applications, Conde, João, Rosa João, Lima {João C. }, and Baptista {Pedro V. } , International Journal Of Photoenergy, Volume 2012, (2012) Abstract

Light has always fascinated mankind and since the beginning of recorded history it has been both a subject of research and a tool for investigation of other phenomena. Today, with the advent of nanotechnology, the use of light has reached its own dimension where light-matter interactions take place at wavelength and subwavelength scales and where the physical/chemical nature of nanostructures controls the interactions. This is the field of nanophotonics which allows for the exploration and manipulation of light in and around nanostructures, single molecules, and molecular complexes. What is more is the use of nanophotonics in biomolecular interactionsnanobiophotonicshas prompt for a plethora of molecular diagnostics and therapeutics making use of the remarkable nanoscale properties. In this paper, we shall focus on the uses of nanobiophotonics for molecular diagnostics involving specific sequence characterization of nucleic acids and for gene delivery systems of relevance for therapy strategies. The use of nanobiophotonics for the combined diagnostics/therapeutics (theranostics) will also be addressed, with particular focus on those systems enabling the development of safer, more efficient, and specific platforms. Finally, the translation of nanophotonics for theranostics into the clinical setting will be discussed.