By Type: Journal Article

A double Philadelphia chromosome-positive chronic myeloid leukemia patient, co-expressing P210BCR-ABL1 and P195BCR-ABL1 isoforms, Vinhas, Raquel, Louren{\c c}o Alexandra, Santos Susana, Ribeiro Patrícia, Silva Madalena, {de Sousa} {Aida Botelho}, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Haematologica, nov, Volume 103, Number 11, p.e549–e552, (2018) Abstract
n/a
POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy, Restani, {Rita B. }, Pires {Rita F. }, Tolmatcheva Anna, Cabral Rita, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Casimiro Teresa, Bonifácio {Vasco D. B. }, and Aguiar-Ricardo Ana , ChemistryOpen, oct, Volume 7, Number 10, p.772–779, (2018) Abstract

POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, Svahn, Noora, Moro {Artur J. }, Roma-Rodrigues Catarina, Puttreddy Rakesh, Rissanen Kari, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Lima {João Carlos}, and Rodríguez Laura , Chemistry - A European Journal, oct, Volume 24, Number 55, p.14654–14667, (2018) Abstract

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 μm) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 μm), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-H⋅⋅⋅π contacts as the main driving forces for the three-dimensional packing in these molecules.

Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics: an update, Baptista, {Pedro V. } , Expert Review Of Molecular Diagnostics, sep, Volume 18, Number 9, p.767–773, (2018) Abstract

Introduction: An update on the uses and applications of the non-cross-linking (NCL) hybridization assay based on the spectral modulation of gold nanoparticles (AuNPs) are presented, emphasizing DNA and RNA detection. Areas covered: Nanotechnology is strongly impacting the way we address diagnostics and therapeutics. In fact, nanoscale devices and particles have been used in a variety of platforms for improved biosensing and, more interestingly, for molecular diagnostics. AuNPs have been used in a great diversity of DNA and RNA detection strategies that are based on their nanoscale properties. Their unique optical properties have put them at the forefront of colorimetric sensing platforms. Among these, those relying on the NCL mechanism using DNA-modified AuNPs have shown remarkable versatility and simplicity for molecular detection of human pathogens, identification of single base alterations at the basis of human disease, gene expression, among others. Application of the NCL assay to molecular diagnostics will be discussed considering the challenges for validation and clinically relevant targets. Expert commentary: Integration of the NCL approach using AuNPs into chip biosensing platforms, projecting miniaturization and portability, will be addressed in terms of the future, i.e. clinical validation and translation to market.

Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform, Veigas, Bruno, Pinto Joana, Vinhas Raquel, Calmeiro Tomás, Martins Rodrigo, Fortunato Elvira, and Baptista {Pedro Viana} , Biosensors & Bioelectronics, may, Volume 91, p.788–795, (2017) Abstract

Ion sensitive field-effect transistors (ISFET) are the basis of radical new sensing approaches. Reliable molecular characterization of specific detection of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. Devices and strategies for biomolecular recognition and detection should be developed into reliable and inexpensive platforms. Here, we describe the development of a flexible thin-film sensor for label free gene expression analysis. A charge modulated ISFET based sensor was integrated with real-time DNA/RNA isothermal nucleic acid amplification: Loop-mediated isothermal amplification (LAMP) and Rolling Circle Amplification (RCA) techniques for c-MYC and BCR-ABL1 genes, allowing for the real-time quantification of template. Also, RCA allowed the direct quantification of RNA targets at room temperature, eliminating the requirement for external temperature controllers and overall complexity of the molecular diagnostic approach. This integration between the biological and the sensor/electronic approaches enabled the development of an inexpensive and direct gene expression-profiling platform.

Gold nanoparticle approach to the selective delivery of gene silencing in cancer-The case for combined delivery?, Mendes, Rita, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Virus Genes, mar, Volume 8, Number 3, (2017) Abstract

Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics.

Smuggling gold nanoparticles across cell types: A new role for exosomes in gene silencing, Roma-Rodrigues, Catarina, Pereira Francisca, {Alves De Matos} {António Pedro}, Fernandes Marta, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Nanomedicine-Nanotechnology Biology And Medicine, may, Volume 13, Number 4, p.1389–1398, (2017) Abstract

Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells’ phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells.

Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: Implications for cancer diagnostics and therapy, Roma-Rodrigues, Catarina, Raposo {Luís R. }, Cabral Rita, Paradinha Fabiana, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, jan, Volume 18, Number 1, (2017) Abstract

Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents, Fernandes, {Alexandra R. }, Jesus João, Martins Pedro, Figueiredo Sara, Rosa Daniela, Martins {Luísa M. R. D. R. S. }, Corvo {Maria Luísa}, Carvalheiro {Manuela C. }, Costa {Pedro M. }, and Baptista {Pedro V. } , Journal of Controlled Release, jan, Volume 245, p.52–61, (2017) Abstract

Due to their small size and unique properties, multifunctional nanoparticles arise as versatile delivery systems easily grafted with a vast array of functional moieties, such as anticancer cytotoxic chemotherapeutics and targeting agents. Here, we formulated a multifunctional gold-nanoparticle (AuNP) system composed of a monoclonal antibody against epidermal growth factor receptor (EGFR) (anti-EGFR D-11) for active targeting and a Co(II) coordination compound [CoCl(H2O)(phendione)2][BF4] (phendione = 1,10-phenanthroline-5,6-dione) (TS265) with proven antiproliferative activity towards cancer cells (designated as TargetNanoTS265). The efficacy of this nanoformulation, and the non-targeted counterpart (NanoTS265), were evaluated in vitro using cancer cell models and in vivo using mice xenografts. Compared to the free compound, both nanoformulations (TargetNanoTS265 and NanoTS265) efficiently delivered the cytotoxic cargo in a controlled selective manner due to the active targeting, boosting tumor cytotoxicity. Treatment of HCT116-derived xenografts tumors with TargetNanoTS265 led to 93% tumor reduction. This simple conceptual nanoformulation demonstrates the potential of nanovectorization of chemotherapeutics via simple assembly onto AuNPs of BSA/HAS-drug conjugates that may easily be expanded to suit other cargo of novel compounds that require optimized controlled delivery to cancer target.

Gold nanobeacons for tracking gene silencing in zebrafish, Cordeiro, Milton, Carvalho Lara, Silva Joana, Saúde Leonor, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Nanomaterials, jan, Volume 7, Number 1, (2017) Abstract

The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP) mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest.

Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(II) and Zn(II) compounds, Raposo, {Luis R. }, Roma-Rodrigues Catarina, Jesus Joao, Martins {L. M. D. R. S., Pombeiro {Armando J. L. }, Baptista {P. V. }, and Fernandes {A. R. } , Veterinary and Comparative Oncology, dec, Volume 15, Number 4, p.1537–1542, (2017) Abstract

Background: Despite continuous efforts, the treatment of canine cancer has still to deliver effective strategies. For example, traditional chemotherapy with doxorubicin and/or docetaxel does not significantly increase survival in dogs with canine mammary tumors (CMTs). Aims: Evaluate the efficiency of two metal compounds [Zn(DION)2]Cl (TS26

Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms, Carlos, {Fábio Ferreira}, Veigas Bruno, Matias {Ana S. }, c}alo Dória Gon{\c, Flores Orfeu, and Baptista {Pedro V. } , Biotechnology Reports, dec, Volume 16, p.21–25, (2017) Abstract

Due to their relevance as disease biomarkers and for diagnostics, screening of single nucleotide polymorphism (SNPs) requires simple and straightforward strategies capable to provide results in medium throughput settings. Suitable approaches relying on isothermal amplification techniques have been evolving to substitute the cumbersome and highly specialized PCR amplification detection schemes. Nonetheless, identification of an individual's genotype still requires sophisticated equipment and laborious methods. Here, we present a low-cost and reliable approach based on the allele specific loop-mediated isothermal amplification (AS-LAMP) coupled to ssDNA functionalized gold nanoparticle (Au-nanoprobe) colorimetric sequence discrimination. The Au-nanoprobe integration allows for the colorimetric detection of AS-LAMP amplification product that can be easily interpreted in less than 15 min. We targeted a clinical relevant SNP responsible for lactose intolerance (-13910C/T dbSNP rs#: 4988235) to demonstrate its proof of concept and full potential of this novel approach.

Nanoparticles-Emerging potential for managing leukemia and lymphoma, Vinhas, Raquel, Mendes Rita, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Frontiers in Bioengineering and Biotechnology, dec, Volume 5, (2017) Abstract

Nanotechnology has become a powerful approach to improve the way we diagnose and treat cancer. In particular, nanoparticles (NPs) possess unique features for enhanced sensitivity and selectivity for earlier detection of circulating cancer biomarkers. In vivo, NPs enhance the therapeutic efficacy of anticancer agents when compared with con-ventional chemotherapy, improving vectorization and delivery, and helping to overcome drug resistance. Nanomedicine has been mostly focused on solid cancers due to take advantage from the enhanced permeability and retention (EPR) effect experienced by tissues in the close vicinity of tumors, which enhance nanomedicine's accumulation and, consequently, improve efficacy. Nanomedicines for leukemia and lymphoma, where EPR effect is not a factor, are addressed differently from solid tumors. Nevertheless, NPs have provided innovative approaches to simple and non-invasive methodologies for diagnosis and treatment in liquid tumors. In this review, we consider the state of the art on different types of nanoconstructs for the management of liquid tumors, from preclinical studies to clinical trials. We also discuss the advantages of nanoplatforms for theranostics and the central role played by NPs in this combined strategy.

Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles, Pedrosa, Pedro, Heuer-Jungemann Amelie, Kanaras {Antonios G. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Journal of Nanobiotechnology, nov, Volume 15, Number 1, (2017) Abstract

Background: Anti-angiogenic therapy has great potential for cancer therapy with several FDA approved formulations but there are considerable side effects upon the normal blood vessels that decrease the potential application of such therapeutics. Chicken chorioallantoic membrane (CAM) has been used as a model to study angiogenesis in vivo. Using a CAM model, it had been previously shown that spherical gold nanoparticles functionalised with an anti-angiogenic peptide can humper neo-angiogenesis. Results: Our results show that gold nanoparticles conjugated with an anti-angiogenic peptide can be combined with visible laser irradiation to enhance angiogenesis arrest in vivo. We show that a green laser coupled to gold nanoparticles can achieve high localized temperatures able to precisely cauterize blood vessels. This combined therapy acts via VEGFR pathway inhibition, leading to a fourfold reduction in FLT-1 expression. Conclusions: The proposed phototherapy extends the use of visible lasers in clinics, combining it with chemotherapy to potentiate cancer treatment. This approach allows the reduction of dose of anti-angiogenic peptide, thus reducing possible side effects, while destroying blood vessels supply critical for tumour progression.

A digital microfluidics platform for loop-mediated isothermal amplification detection, Coelho, {Beatriz Jorge}, Veigas Bruno, Águas Hugo, Fortunato Elvira, Martins Rodrigo, Baptista {Pedro Viana}, and Igreja Rui , Sensors, nov, Volume 17, Number 11, (2017) Abstract

Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3°C, for 65°C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions.

Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, Mendes, Rita, Pedrosa Pedro, Lima {João C. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Scientific Reports, sep, Volume 7, Number 1, (2017) Abstract

Photothermal Therapy (PTT) impact in cancer therapy has been increasing due to the enhanced photothermal capabilities of a new generation of nanoscale photothermal agents. Among these nanoscale agents, gold nanoshells and nanorods have demonstrated optimal properties for translation of near infra-red radiation into heat at the site of interest. However, smaller spherical gold nanoparticles (AuNPs) are easier to produce, less toxic and show improved photoconversion capability that may profit from the irradiation in the visible via standard surgical green lasers. Here we show the efficient light-to-heat conversion of spherical 14 nm AuNPs irradiated in the visible region (at the surface plasmons resonance peak) and its application to selectively obliterate cancer cells. Using breast cancer as model, we show a synergistic interaction between heat (photoconversion at 530 nm) and cytotoxic action by doxorubicin with clear advantages to those of the individual therapy approaches.

Immortalization and characterization of a new canine mammary tumour cell line FR37-CMT, Raposo, {L. R. }, Roma-Rodrigues C., Faísca P., Alves M., Henriques J., Carvalheiro {M. C. }, Corvo {M. L. }, Baptista {P. V. }, Pombeiro {A. J. }, and Fernandes {A. R. } , Veterinary and Comparative Oncology, sep, Volume 15, Number 3, p.952–967, (2017) Abstract

Here we describe the establishment of a new canine mammary tumour (CMT) cell line, FR37-CMT that does not show dependence on female hormonal signaling to induce tumour xenografts in NOD-SCID mice. FR37-CMT cell line has a stellate or fusiform shape, displays the ability to reorganize the collagen matrix, expresses vimentin, CD44 and shows the loss of E-cadherin which is considered a fundamental event in epithelial to mesenchymal transition (EMT). The up-regulation of ZEB1, the detection of phosphorylated ERK1/2 and the downregulation of DICER1 and miR-200c are also in accordance with the mesenchymal characteristics of FR37-CMT cell line. FR37-CMT shows a higher resistance to cisplatin (IC50>50 µM) and to doxorubicin (IC50>5.3 µM) compared with other CMT cell lines. These results support the use of FR37-CMT as a new CMT model that may assist the understanding of the molecular mechanisms underlying EMT, CMT drug resistance, fostering the development of novel therapies targeting CMT.

Current trends in molecular diagnostics of chronic myeloid leukemia, Vinhas, Raquel, Cordeiro Milton, Pedrosa Pedro, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Leukemia & Lymphoma, aug, Volume 58, Number 8, p.1791–1804, (2017) Abstract

Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

Digital microfluidics for nucleic acid amplification, Coelho, Beatriz, Veigas Bruno, Fortunato Elvira, Martins Rodrigo, Águas Hugo, Igreja Rui, and Baptista {Pedro V. } , Sensors, jul, Volume 17, Number 7, (2017) Abstract

Digital Microfluidics (DMF) has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

Gold Nanoparticles for BCR-ABL1 Gene Silencing: Improving Tyrosine Kinase Inhibitor Efficacy in Chronic Myeloid Leukemia, Vinhas, Raquel, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Molecular Therapy - Nucleic Acids, jun, Volume 7, p.408–416, (2017) Abstract

Introduction of tyrosine kinase inhibitors for chronic myeloid leukemia treatment is associated with a 63% probability of maintaining a complete cytogenetic response, meaning that over 30% patients require an alternative methodology to overcome resistance, tolerance, or side effects. Considering the potential of nanotechnology in cancer treatment and the benefits of a combined therapy with imatinib, a nanoconjugate was designed to achieve BCR-ABL1 gene silencing. Gold nanoparticles were functionalized with a single-stranded DNA oligonucleotide that selectively targets the e14a2 BCR-ABL1 transcript expressed by K562 cells. This gold (Au)-nanoconjugate showed great efficacy in gene silencing that induced a significant increase in cell death. Variation of BCL-2 and BAX protein expression, an increase of caspase-3 activity, and apoptotic bodies in cells treated with the nanoconjugate demonstrate its aptitude for inducing apoptosis on K562 BCR-ABL1-expressing cells. Moreover, the combination of the silencing Au-nanoconjugate with imatinib prompted a decrease of imatinib IC50. This Au-nanoconjugate was also capable of inducing the loss of viability of imatinib-resistant K562 cells. This strategy shows that combination of Au-nanoconjugate and imatinib make K562 cells more vulnerable to chemotherapy and that the Au-nanoconjugate alone may overcome imatinib-resistance mechanisms, thus providing an effective treatment for chronic myeloid leukemia patients who exhibit drug tolerance.

In vitro and in vivo biological characterization of the anti-proliferative potential of a cyclic trinuclear organotin(IV) complex, Martins, Marta, Baptista P. V., Mendo {Ana Soraia}, Correia C., Videira Paula, Rodrigues A. S., Muthukumaran Jayaraman, Santos-Silva Teresa, Silva Ana, {Guedes da Silva} Fatima {M. C. }, Gigante Joana, Duarte Antonio, Gajewska Malgorzata, and Fernandes A. R. , Molecular Biosystems, Volume 12, Number 3, p.1015–1023, (2016) Abstract

Identification of novel molecules that can selectively inhibit the growth of tumor cells, avoid causing side effects to patients and/or intrinsic or acquired resistance, usually associated with common chemotherapeutic agents, is of utmost importance. Organometallic compounds have gained importance in oncologic chemotherapy, such as organotin(IV) complexes. In this study, we assessed the anti-tumor activity of the cyclic trinuclear organotin(IV) complex with an aromatic oximehydroxamic acid group [nBu(2)Sn(L)](3)(H2L = N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) - MG85 - and provided further characterization of its biological targets. We have previously shown the high anti-proliferative activity of this complex against human colorectal and hepatocellular carcinoma cell lines and lower cytotoxicity in neonatal non-tumor fibroblasts. MG85 induces tumor cell apoptosis and down-regulation of proteins related to tubulin dynamics (TCTP and COF1). Further characterization included the: (i) evaluation of interference in the cell cycle progression, including the expression of critical genes; (ii) affinity to DNA and the corresponding mode of binding; (iii) genotoxic potential in cells with deficient DNA repair pathways; and (iv) in vivo tumor reduction efficiency using mouse colorectal carcinoma xenografts.

Synthesis, characterization, thermal properties and antiproliferative potential of copper(II) 4 '-phenylterpyridine compounds, Ma, Zhen, Zhang Bian, {Guedes da Silva} Fátima {M. C. }, Silva Joana, Mendo {Ana Soraia}, Baptista {Pedro Viana}, Fernandes {Alexandra R. }, and Pombeiro {Armando J. L. } , Dalton Transactions, Volume 45, Number 12, p.5339–5355, (2016) Abstract

Reactions between 4'-phenyl-terpyridine (L) and several Cu(II) salts (p-toluenesulfonate, benzoate and o-, m-or p-hydroxybenzoate) led to the formation of [Cu(p-SO3C6H4CH3)L(H2O)(2)](p-SO3C6H4CH3) (1), [Cu(OCOPh)(2)L] (2), [Cu(o-OCOC6H4OH)(2)L] (3), [Cu(m-OCOC6H4OH)(2)L]center dot MeOH (4 center dot MeOH) and [Cu(pOCOC(6)H(4)OH)(2)L]center dot 2H(2)O (5 center dot 2H2O), which were characterized by elemental and TG-DTA analyses, ESI-MS, IR spectroscopy and single crystal X-ray diffraction, as well as by conductivimetry. In all structures the Cu atoms present N3O3 octahedral coordination geometries, which, in 2-5, are highly distorted as a result of the chelating-bidentate mode of one of the carboxylate ligands. Intermolecular pi...pi stacking interactions could also be found in 2-5 (in the 3.569-3.651 angstrom range and involving solely the pyridyl rings). Mediumstrong hydrogen bond interactions lead to infinite 1D chains (in 1 and 4) and to an infinite 2D network (in 5). Compounds 1 and 4 show high in vitro cytotoxicity towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma cell lines. The antiproliferative potential of compound 1 is due to an increase of the apoptotic process that was confirmed by Hoechst staining, flow cytometry and RT-qPCR. All compounds able to non-covalently intercalate the DNA helix and induce in vitro pDNA double-strand breaks in the absence of H2O2. Concerning compound 1, the hydroxyl radical and singlet oxygen do not appear to be involved in the pDNA cleavage process and the fact that this cleavage also occurs in the absence of molecular oxygen points to a hydrolytic mechanism of cleavage.

Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo, Roma-Rodrigues, Catarina, Heuer-Jungemann Amelie, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, Kanaras {Antonios G. }, and Baptista {Pedro Miguel Ribeiro Viana} , International journal of nanomedicine, Volume 11, p.2633–2639, (2016) Abstract

In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP-peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP-peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development.

Heteroleptic mononuclear compounds of ruthenium(II): Synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos, Lenis-rojas, {O. A. }, Fernandes {A. R. }, Roma-Rodrigues Catarina, Baptista {P. V. }, Marques F., Pérez-Fernández D., Guerra-Varela J., Sánchez-Magraner Lissete, Vázquez-garcía D., Torres López} {M., Fernández-Planells A., and Fernández-Rosas J. , Dalton Transactions, dec, Volume 45, Number 47, p.19127–19140, (2016) Abstract

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a–5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2′-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P–{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(II) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 ± 2.82 μM and 20.02 ± 1.46 μM, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L−1 for compound 1a to 170.30 mg L−1 for compound 2a.

Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes, Vinhas, Raquel, Correia Claudia, Ribeiro Patricia, Lourenco Alexandra, {de Sousa} {Aida Botelho}, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, and Baptista {Pedro Miguel Ribeiro Viana} , Analytical and Bioanalytical Chemistry, jul, Volume 408, Number 19, p.5277–5284, (2016) Abstract

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible.

loading