By Type: Journal Article

Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor, Cordeiro, Mílton, Otrelo-Cardoso {Ana Rita Castro}, Svergun {Dmitri I. }, Konarev {Petr V. }, Lima {João Carlos}, Santos-Silva Teresa, and Baptista {Pedro Viana} , ACS Chemical Biology, may, Volume 13, Number 5, p.1235–1242, (2018) Abstract

Selective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.

Nanoparticle-AntagoMIR based targeting of MIR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells, McCully, Mark, Conde João, Baptista {Pedro V. }, Mullin Margaret, Dalby {Matthew J. }, and Berry {Catherine C. } , PLoS ONE, feb, Volume 13, Number 2, (2018) Abstract

Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-Tagged nanoparticles offer as novel therapeutics in regenerative medicine.

Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles, Ribeiro, {A. P. C. }, Anbu S., Alegria {E. C. B. A. }, Fernandes {A. R. }, Baptista {P. V. }, Mendes R., Matias {A. S. }, Mendes M., {Guedes da Silva} {M. F. C. }, and Pombeiro {A. J. L. } , Biomedicine and Pharmacotherapy, may, Volume 101, p.137–144, (2018) Abstract

Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC50 (0.5 ± 0.1 μM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC50 5.0 ± 0.1 μM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra.

Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero-Arylidene-9(10H)-Anthrone, Peixoto, Daniela, Figueiredo Margarida, Malta Gabriela, Roma-Rodrigues Catarina, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Barroso Sónia, Carvalho {Ana Luísa}, Afonso {Carlos A. M. }, Ferreira {Luisa M. }, and Branco {Paula S. } , European Journal of Organic Chemistry, jan, Volume 2018, Number 4, p.545–549, (2018) Abstract

A new and never before reported hetero-arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally confirmed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed, indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity [Kb = 2.0 (±0.20) × 105 m–1], which is 10 × higher than that described for doxorubicin [Kb = 3.2 (±0.23) × 104 m–1]. Furthermore, compound 4 quenches the fluorescence emission of a GelRed–CT-DNA system with a quenching constant (KSV) of 3.3 (±0.3) × 103 m–1 calculated by the Stern–Volmer equation.

Gold nanobeacons for tracking gene silencing in zebrafish, Cordeiro, Milton, Carvalho Lara, Silva Joana, Saúde Leonor, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Nanomaterials, jan, Volume 7, Number 1, (2017) Abstract

The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP) mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest.

Targeting canine mammary tumours via gold nanoparticles functionalized with promising Co(II) and Zn(II) compounds, Raposo, {Luis R. }, Roma-Rodrigues Catarina, Jesus Joao, Martins {L. M. D. R. S., Pombeiro {Armando J. L. }, Baptista {P. V. }, and Fernandes {A. R. } , Veterinary and Comparative Oncology, dec, Volume 15, Number 4, p.1537–1542, (2017) Abstract

Background: Despite continuous efforts, the treatment of canine cancer has still to deliver effective strategies. For example, traditional chemotherapy with doxorubicin and/or docetaxel does not significantly increase survival in dogs with canine mammary tumors (CMTs). Aims: Evaluate the efficiency of two metal compounds [Zn(DION)2]Cl (TS26

Allele specific LAMP- gold nanoparticle for characterization of single nucleotide polymorphisms, Carlos, {Fábio Ferreira}, Veigas Bruno, Matias {Ana S. }, c}alo Dória Gon{\c, Flores Orfeu, and Baptista {Pedro V. } , Biotechnology Reports, dec, Volume 16, p.21–25, (2017) Abstract

Due to their relevance as disease biomarkers and for diagnostics, screening of single nucleotide polymorphism (SNPs) requires simple and straightforward strategies capable to provide results in medium throughput settings. Suitable approaches relying on isothermal amplification techniques have been evolving to substitute the cumbersome and highly specialized PCR amplification detection schemes. Nonetheless, identification of an individual's genotype still requires sophisticated equipment and laborious methods. Here, we present a low-cost and reliable approach based on the allele specific loop-mediated isothermal amplification (AS-LAMP) coupled to ssDNA functionalized gold nanoparticle (Au-nanoprobe) colorimetric sequence discrimination. The Au-nanoprobe integration allows for the colorimetric detection of AS-LAMP amplification product that can be easily interpreted in less than 15 min. We targeted a clinical relevant SNP responsible for lactose intolerance (-13910C/T dbSNP rs#: 4988235) to demonstrate its proof of concept and full potential of this novel approach.

Nanoparticles-Emerging potential for managing leukemia and lymphoma, Vinhas, Raquel, Mendes Rita, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Frontiers in Bioengineering and Biotechnology, dec, Volume 5, (2017) Abstract

Nanotechnology has become a powerful approach to improve the way we diagnose and treat cancer. In particular, nanoparticles (NPs) possess unique features for enhanced sensitivity and selectivity for earlier detection of circulating cancer biomarkers. In vivo, NPs enhance the therapeutic efficacy of anticancer agents when compared with con-ventional chemotherapy, improving vectorization and delivery, and helping to overcome drug resistance. Nanomedicine has been mostly focused on solid cancers due to take advantage from the enhanced permeability and retention (EPR) effect experienced by tissues in the close vicinity of tumors, which enhance nanomedicine's accumulation and, consequently, improve efficacy. Nanomedicines for leukemia and lymphoma, where EPR effect is not a factor, are addressed differently from solid tumors. Nevertheless, NPs have provided innovative approaches to simple and non-invasive methodologies for diagnosis and treatment in liquid tumors. In this review, we consider the state of the art on different types of nanoconstructs for the management of liquid tumors, from preclinical studies to clinical trials. We also discuss the advantages of nanoplatforms for theranostics and the central role played by NPs in this combined strategy.

Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles, Pedrosa, Pedro, Heuer-Jungemann Amelie, Kanaras {Antonios G. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Journal of Nanobiotechnology, nov, Volume 15, Number 1, (2017) Abstract

Background: Anti-angiogenic therapy has great potential for cancer therapy with several FDA approved formulations but there are considerable side effects upon the normal blood vessels that decrease the potential application of such therapeutics. Chicken chorioallantoic membrane (CAM) has been used as a model to study angiogenesis in vivo. Using a CAM model, it had been previously shown that spherical gold nanoparticles functionalised with an anti-angiogenic peptide can humper neo-angiogenesis. Results: Our results show that gold nanoparticles conjugated with an anti-angiogenic peptide can be combined with visible laser irradiation to enhance angiogenesis arrest in vivo. We show that a green laser coupled to gold nanoparticles can achieve high localized temperatures able to precisely cauterize blood vessels. This combined therapy acts via VEGFR pathway inhibition, leading to a fourfold reduction in FLT-1 expression. Conclusions: The proposed phototherapy extends the use of visible lasers in clinics, combining it with chemotherapy to potentiate cancer treatment. This approach allows the reduction of dose of anti-angiogenic peptide, thus reducing possible side effects, while destroying blood vessels supply critical for tumour progression.

A digital microfluidics platform for loop-mediated isothermal amplification detection, Coelho, {Beatriz Jorge}, Veigas Bruno, Águas Hugo, Fortunato Elvira, Martins Rodrigo, Baptista {Pedro Viana}, and Igreja Rui , Sensors, nov, Volume 17, Number 11, (2017) Abstract

Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3°C, for 65°C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions.

Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, Mendes, Rita, Pedrosa Pedro, Lima {João C. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Scientific Reports, sep, Volume 7, Number 1, (2017) Abstract

Photothermal Therapy (PTT) impact in cancer therapy has been increasing due to the enhanced photothermal capabilities of a new generation of nanoscale photothermal agents. Among these nanoscale agents, gold nanoshells and nanorods have demonstrated optimal properties for translation of near infra-red radiation into heat at the site of interest. However, smaller spherical gold nanoparticles (AuNPs) are easier to produce, less toxic and show improved photoconversion capability that may profit from the irradiation in the visible via standard surgical green lasers. Here we show the efficient light-to-heat conversion of spherical 14 nm AuNPs irradiated in the visible region (at the surface plasmons resonance peak) and its application to selectively obliterate cancer cells. Using breast cancer as model, we show a synergistic interaction between heat (photoconversion at 530 nm) and cytotoxic action by doxorubicin with clear advantages to those of the individual therapy approaches.

Immortalization and characterization of a new canine mammary tumour cell line FR37-CMT, Raposo, {L. R. }, Roma-Rodrigues C., Faísca P., Alves M., Henriques J., Carvalheiro {M. C. }, Corvo {M. L. }, Baptista {P. V. }, Pombeiro {A. J. }, and Fernandes {A. R. } , Veterinary and Comparative Oncology, sep, Volume 15, Number 3, p.952–967, (2017) Abstract

Here we describe the establishment of a new canine mammary tumour (CMT) cell line, FR37-CMT that does not show dependence on female hormonal signaling to induce tumour xenografts in NOD-SCID mice. FR37-CMT cell line has a stellate or fusiform shape, displays the ability to reorganize the collagen matrix, expresses vimentin, CD44 and shows the loss of E-cadherin which is considered a fundamental event in epithelial to mesenchymal transition (EMT). The up-regulation of ZEB1, the detection of phosphorylated ERK1/2 and the downregulation of DICER1 and miR-200c are also in accordance with the mesenchymal characteristics of FR37-CMT cell line. FR37-CMT shows a higher resistance to cisplatin (IC50>50 µM) and to doxorubicin (IC50>5.3 µM) compared with other CMT cell lines. These results support the use of FR37-CMT as a new CMT model that may assist the understanding of the molecular mechanisms underlying EMT, CMT drug resistance, fostering the development of novel therapies targeting CMT.

Current trends in molecular diagnostics of chronic myeloid leukemia, Vinhas, Raquel, Cordeiro Milton, Pedrosa Pedro, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Leukemia & Lymphoma, aug, Volume 58, Number 8, p.1791–1804, (2017) Abstract

Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

Digital microfluidics for nucleic acid amplification, Coelho, Beatriz, Veigas Bruno, Fortunato Elvira, Martins Rodrigo, Águas Hugo, Igreja Rui, and Baptista {Pedro V. } , Sensors, jul, Volume 17, Number 7, (2017) Abstract

Digital Microfluidics (DMF) has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

Gold Nanoparticles for BCR-ABL1 Gene Silencing: Improving Tyrosine Kinase Inhibitor Efficacy in Chronic Myeloid Leukemia, Vinhas, Raquel, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Molecular Therapy - Nucleic Acids, jun, Volume 7, p.408–416, (2017) Abstract

Introduction of tyrosine kinase inhibitors for chronic myeloid leukemia treatment is associated with a 63% probability of maintaining a complete cytogenetic response, meaning that over 30% patients require an alternative methodology to overcome resistance, tolerance, or side effects. Considering the potential of nanotechnology in cancer treatment and the benefits of a combined therapy with imatinib, a nanoconjugate was designed to achieve BCR-ABL1 gene silencing. Gold nanoparticles were functionalized with a single-stranded DNA oligonucleotide that selectively targets the e14a2 BCR-ABL1 transcript expressed by K562 cells. This gold (Au)-nanoconjugate showed great efficacy in gene silencing that induced a significant increase in cell death. Variation of BCL-2 and BAX protein expression, an increase of caspase-3 activity, and apoptotic bodies in cells treated with the nanoconjugate demonstrate its aptitude for inducing apoptosis on K562 BCR-ABL1-expressing cells. Moreover, the combination of the silencing Au-nanoconjugate with imatinib prompted a decrease of imatinib IC50. This Au-nanoconjugate was also capable of inducing the loss of viability of imatinib-resistant K562 cells. This strategy shows that combination of Au-nanoconjugate and imatinib make K562 cells more vulnerable to chemotherapy and that the Au-nanoconjugate alone may overcome imatinib-resistance mechanisms, thus providing an effective treatment for chronic myeloid leukemia patients who exhibit drug tolerance.

Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform, Veigas, Bruno, Pinto Joana, Vinhas Raquel, Calmeiro Tomás, Martins Rodrigo, Fortunato Elvira, and Baptista {Pedro Viana} , Biosensors & Bioelectronics, may, Volume 91, p.788–795, (2017) Abstract

Ion sensitive field-effect transistors (ISFET) are the basis of radical new sensing approaches. Reliable molecular characterization of specific detection of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. Devices and strategies for biomolecular recognition and detection should be developed into reliable and inexpensive platforms. Here, we describe the development of a flexible thin-film sensor for label free gene expression analysis. A charge modulated ISFET based sensor was integrated with real-time DNA/RNA isothermal nucleic acid amplification: Loop-mediated isothermal amplification (LAMP) and Rolling Circle Amplification (RCA) techniques for c-MYC and BCR-ABL1 genes, allowing for the real-time quantification of template. Also, RCA allowed the direct quantification of RNA targets at room temperature, eliminating the requirement for external temperature controllers and overall complexity of the molecular diagnostic approach. This integration between the biological and the sensor/electronic approaches enabled the development of an inexpensive and direct gene expression-profiling platform.

Gold nanoparticle approach to the selective delivery of gene silencing in cancer-The case for combined delivery?, Mendes, Rita, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Virus Genes, mar, Volume 8, Number 3, (2017) Abstract

Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics.

Smuggling gold nanoparticles across cell types: A new role for exosomes in gene silencing, Roma-Rodrigues, Catarina, Pereira Francisca, {Alves De Matos} {António Pedro}, Fernandes Marta, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Nanomedicine-Nanotechnology Biology And Medicine, may, Volume 13, Number 4, p.1389–1398, (2017) Abstract

Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells’ phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells.

Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: Implications for cancer diagnostics and therapy, Roma-Rodrigues, Catarina, Raposo {Luís R. }, Cabral Rita, Paradinha Fabiana, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, jan, Volume 18, Number 1, (2017) Abstract

Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents, Fernandes, {Alexandra R. }, Jesus João, Martins Pedro, Figueiredo Sara, Rosa Daniela, Martins {Luísa M. R. D. R. S. }, Corvo {Maria Luísa}, Carvalheiro {Manuela C. }, Costa {Pedro M. }, and Baptista {Pedro V. } , Journal of Controlled Release, jan, Volume 245, p.52–61, (2017) Abstract

Due to their small size and unique properties, multifunctional nanoparticles arise as versatile delivery systems easily grafted with a vast array of functional moieties, such as anticancer cytotoxic chemotherapeutics and targeting agents. Here, we formulated a multifunctional gold-nanoparticle (AuNP) system composed of a monoclonal antibody against epidermal growth factor receptor (EGFR) (anti-EGFR D-11) for active targeting and a Co(II) coordination compound [CoCl(H2O)(phendione)2][BF4] (phendione = 1,10-phenanthroline-5,6-dione) (TS265) with proven antiproliferative activity towards cancer cells (designated as TargetNanoTS265). The efficacy of this nanoformulation, and the non-targeted counterpart (NanoTS265), were evaluated in vitro using cancer cell models and in vivo using mice xenografts. Compared to the free compound, both nanoformulations (TargetNanoTS265 and NanoTS265) efficiently delivered the cytotoxic cargo in a controlled selective manner due to the active targeting, boosting tumor cytotoxicity. Treatment of HCT116-derived xenografts tumors with TargetNanoTS265 led to 93% tumor reduction. This simple conceptual nanoformulation demonstrates the potential of nanovectorization of chemotherapeutics via simple assembly onto AuNPs of BSA/HAS-drug conjugates that may easily be expanded to suit other cargo of novel compounds that require optimized controlled delivery to cancer target.

Heteroleptic mononuclear compounds of ruthenium(II): Synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos, Lenis-rojas, {O. A. }, Fernandes {A. R. }, Roma-Rodrigues Catarina, Baptista {P. V. }, Marques F., Pérez-Fernández D., Guerra-Varela J., Sánchez-Magraner Lissete, Vázquez-garcía D., Torres López} {M., Fernández-Planells A., and Fernández-Rosas J. , Dalton Transactions, dec, Volume 45, Number 47, p.19127–19140, (2016) Abstract

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a–5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2′-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P–{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(II) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 ± 2.82 μM and 20.02 ± 1.46 μM, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L−1 for compound 1a to 170.30 mg L−1 for compound 2a.

Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes, Vinhas, Raquel, Correia Claudia, Ribeiro Patricia, Lourenco Alexandra, {de Sousa} {Aida Botelho}, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, and Baptista {Pedro Miguel Ribeiro Viana} , Analytical and Bioanalytical Chemistry, jul, Volume 408, Number 19, p.5277–5284, (2016) Abstract

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible.

Gold nanoparticles for diagnostics: Advances towards points of care, Cordeiro, Milton, Pedrosa Pedro, Carlos {Fábio Ferreira}, Lopez António, and Baptista {Pedro Viana} , Diagnostics, dec, Volume 6, Number 4, (2016) Abstract

The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting.

Liposomes as Delivery System of a Sn(IV) Complex for Cancer Therapy, {Luisa Corvo}, M., Mendo {Ana Soraia}, Figueiredo Sara, Gaspar Rogerio, Larguinho Miguel, {Guedes da Silva} Fatima {M. C. }, Baptista {Pedro Miguel Ribeiro Viana}, and de Fernandes {Maria Alexandra Núncio Carvalho Ramos} , Pharmaceutical Research, jun, Volume 33, Number 6, p.1351–1358, (2016) Abstract

Tin complexes demonstrate antiproliferative activities in some case higher than cisplatin, with IC50 at the low micromolar range. We have previously showed that the cyclic trinuclear complex of Sn(IV) bearing an aromatic oximehydroxamic acid group [nBu(2)Sn(L)](3) (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) (MG85) shows high anti-proliferative activity, induces apoptosis and oxidative stress, and causes destabilization of tubulin microtubules, particularly in colorectal carcinoma cells. Despite the great efficacy towards cancer cells, this complex still shows some cytotoxicity to healthy cells. Targeted delivery of this complex specifically towards cancer cells might foster cancer treatment.MG85 complex was encapsulated into liposomal formulation with and without an active targeting moiety and cancer and healthy cells cytotoxicity was evaluated.Encapsulation of MG85 complex in targeting PEGylated liposomes enhanced colorectal carcinoma (HCT116) cancer cell death when compared to free complex, whilst decreasing cytotoxicity in non-tumor cells. Labeling of liposomes with Rhodamine allowed assessing internalization in cells, which showed significant cell uptake after 6 h of incubation. Cetuximab was used as targeting moiety in the PEGylated liposomes that displayed higher internalization rate in HCT116 cells when compared with non-targeted liposomes, which seems to internalize via active binding of Cetuximab to cells.The proposed formulation open new avenues in the design of innovative transition metal-based vectorization systems that may be further extended to other novel metal complexes towards the improvement of their anti-cancer efficacy, which is usually hampered by solubility issues and/or toxicity to healthy tissues.

BioCode gold-nanobeacon for the detection of fusion transcripts causing chronic myeloid leukemia, Cordeiro, M., Giestas L., Lima {J. C. }, and Baptista {P. M. V. } , Journal of Nanobiotechnology, may, Volume 14, Number 1, (2016) Abstract

BACKGROUND: Gold-nanobeacons (Au-nanobeacons) have proven to be versatile systems for molecular diagnostics and therapeutic actuators. Here, we present the development and characterization of two gold nanobeacons combined with Förster resonance energy transfer (FRET) based spectral codification for dual mode sequence discrimination. This is the combination of two powerful technologies onto a single nanosystem.RESULTS: We proved this concept to detect the most common fusion sequences associated with the development of chronic myeloid leukemia, e13a2 and e14a2. The detection is based on spectral shift of the donor signal to the acceptor, which allows for corroboration of the hybridization event. The Au-nanobeacon acts as scaffold for detection of the target in a homogenous format whose output capability (i.e. additional layer of information) is potentiated via the spectral codification strategy.CONCLUSIONS: The spectral coded Au-nanobeacons permit the detection of each of the pathogenic fusion sequences, with high specificity towards partial complementary sequences. The proposed BioCode Au-nanobeacon concept provides for a nanoplatform for molecular recognition suitable for cancer diagnostics.