Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.
info:eu-repo/grantAgreement/FCT/5876/147333/PT# info:eu-repo/grantAgreement/FCT/5876/147258/PT# info:eu-repo/grantAgreement/FCT/PD/PD%2FBD%2F52211%2F2013/PT# sem pdf conforme despacho. FCT - Portuguese Foundation for Science and Technology under the project number POCI-01-0145-FEDER-007688, and project DISERTOX, Reference PTDC/CTM-NAN/2912/2014. co-financed by the ERDF under the PT2020 Partnership Agreement (POCI-01-0145-FEDER-007728.