Publications in the Year: 2015

Book Chapter

Pedrosa, P, Baptista {PV}.  2015.  Gold and Silver Nanoparticles for Diagnostics of Infection, may. Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases. :1–18., Netherlands: Elsevier Abstract

The use of noble metal nanoparticles (NPs), particularly gold and silver, in biomolecular applications has surged, ranging from innovative strategies for molecular diagnostics to radical new ways of treatment. Taking advantage of the particular optical-chemical characteristics of these metal NPs, every year new methods of molecular diagnostics of infectious diseases are reported providing higher analytical capability, sensitivity, and throughput at lower costs and with the possibility to be used where needed. Gold and silver NPs, or a combination of both, possess amazing optical/spectral properties, such as the intense localized surface plasmon resonance that, together with the ease of surface modification and functionalization with biomolecules capable of specific molecular recognition, have provided new strategies for molecular analysis, extending the detection limit of current nucleic acid and protein-based assays.This chapter focuses on the methods used for diagnostic of infectious diseases that take advantage of noble metal NPs. It discusses their use in biomolecular recognition and their most promising approaches, and it compares their advantages and disadvantages.

Veigas, B, Fortunato E, Baptista {PV }.  2015.  Mobile based gold nanoprobe TB diagnostics for point-of-need, jan. Mobile Health Technologies: Methods and Protocols. Part 1(Rasooly, {Avraham }, Herold, {Keith E. }, Eds.).:41–56., United States: Humana Press Abstract

Nanotechnology based diagnostics has provided improved tools for pathogen detection and sensitive and specific characterization of antibiotic resistance signatures. Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis Complex (MTBC) and, according to the World Health Organization, is one of the most serious infectious diseases in the world. Recent advances in molecular diagnostics of TB have improved both the detection time and sensitivity but they still require specialized technical personnel and cumbersome laboratory equipment. Diagnostics at point-of-need is crucial to TB control as it may provide rapid identification of pathogen together with the resistance profile of TB strains, originated from single nucleotide polymorphisms (SNPs) in different loci , allowing for a more accurate indication of the adequate therapy.Gold nanoparticles have been widely used in molecular diagnostics platforms. Here, we describe the use of gold nanoprobes (oligonucleotide functionalized gold nanoparticles) to be used in a non-crosslinking colorimetric method for the direct detection of specific DNA targets. Due to the remarkable optical properties of gold nanoparticles, this detection system provides colorimetric detection of the pathogen together with the potential of identification of several single nucleotide polymorphisms (SNPs) involved in TB resistance to antibiotics. For point-of-need use, we adapted this strategy to a low-cost mobile scheme using a paper based revelation platform and where the spectral signature is transposed to RGB data via a smartphone device. This way, identification of pathogen and characterization of resistance signatures is achieved at point-of-need.

Larguinho, M, Capelo {JL}, Baptista {PV}.  2015.  Nanoparticles for mass spectrometry applications, sep. Handbook of Nanoparticles. :1371–1396., Switzerland: Springer International Publishing AG Abstract

Nanotechnology has led to the development of new and improved materials, and particular emphasis has been directed toward nanoparticles and their multiple bio-applications. Nanoparticles exhibit size-, shape-, and compositiondependent properties, e.g., surface plasmon resonance and photothermal properties, which may potentially enhance laser desorption/ionization systems for mass spectrometry-based analysis of biomolecules. Also, nanoparticles possess high surface to volume ratio that can be easily derivatized with a wide range of ligands with different functional groups. Surface modification makes nanoparticles advantageous for sample preparation procedures prior to detection by mass spectrometry. Moreover, it allows the synthesis of affinity probes, which promotes interactions between nanoparticles and analytes, greatly enhancing the ionization efficiency. This chapter provides a comprehensive discussion on the use of nanoparticles for mass spectrometry-related applications, from sample preparation methodologies to ionization surfaces. Applications will focus on nanoparticle size, composition, and functionalization, as a comparative point of view on optimal characteristics toward maximization of bioassay efficiency.

Franco, R, Pedrosa P, Carlos {FF}, Veigas B, Baptista {PMRV}.  2015.  Gold nanoparticles for DNA/RNA-based diagnostics, sep. Handbook of Nanoparticles. :1339–1370., Switzerland: Springer International Publishing AG Abstract

The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development in exploring biomolecular interactions with AuNPscontaining systems, pursuing biomedical applications in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of DNA/RNA detection and characterization systems for diagnostics, including systems suitable for point of need. Here, emphasis will be on available molecular detection schemes of relevant pathogens and their molecular characterization, genomic sequences associated with medical conditions (including cancer), mutation and polymorphism identification, and the quantification of gene expression.

Journal Article

McCully, M, Hernandez Y, Conde J, Baptista {PMRV}, {de la Fuente} {JM }, Hursthouse A, Stirling D, Berry {CC }.  2015.  Significance of the balance between intracellular glutathione and polyethylene glycol for successful release of small interfering RNA from gold nanoparticles, oct. Nano Research. 8:3281–3292., Number 10: Tsinghua University Press | Springer Abstract

The therapeutic promise of small interfering RNAs (siRNAs) for specific gene silencing is dependent on the successful delivery of functional siRNAs to the cytoplasm. Their conjugation to an established delivery platform, such as gold nanoparticles, offers tremendous potential for treating diseases and advancing our understanding of cellular processes. Their success or failure is dependent on both the uptake of the nanoparticles into the cells and subsequent intracellular release of the functional siRNA. In this study, utilizing gold nanoparticle siRNA-mediated delivery against C-MYC, we aimed to determine if we could achieve knockdown in a cancer cell line with low levels of intracellular glutathione, and determine the influence, if any, of polyethylene glycol (PEG) ligand density on knockdown, with a view to determining the optimal nanoparticle design to achieve C-MYC knockdown. We demonstrate that, regardless of the PEG density, knockdown in cells with relatively low glutathione levels can be achieved, as well as the possible effect of steric hindrance of PEG on the availability of the siRNA for cleavage in the intracellular environment. Gold nanoparticle uptake was demonstrated via transmission electron microscopy and mass spectroscopy, while knockdown was determined at the protein and physiological levels (cells in S-phase) by in-cell westerns and BrdU incorporation, respectively.

Conde, J, Tian F, Hernandez Y, Bao C, Baptista {PMRV}, Cui D, Stoeger T, {de la Fuente} {JM }.  2015.  RNAi-based glyconanoparticles trigger apoptotic pathways for in vitro and in vivo enhanced cancer-cell killing. Nanoscale. 7:9083–9091., Number 19: RSC - Royal Society of Chemistry Abstract

Gold glyconanoparticles (GlycoNPs) are full of promise in areas like biomedicine, biotechnology and materials science due to their amazing physical, chemical and biological properties. Here, siRNA GlycoNPs (AuNP@PEG@Glucose@siRNA) in comparison with PEGylated GlycoNPs (AuNP@PEG@Glucose) were applied in vitro to a luciferase-CMT/167 adenocarcinoma cancer cell line and in vivo via intratracheal instillation directly into the lungs of B6 albino mice grafted with luciferase-CMT/167 adenocarcinoma cells. siRNA GlycoNPs but not PEGylated GlycoNPs induced the expression of pro-apoptotic proteins such as Fas/CD95 and caspases 3 and 9 in CMT/167 adenocarcinoma cells in a dose dependent manner, independent of the inflammatory response, evaluated by bronchoalveolar lavage cell counting. Moreover, in vivo pulmonary delivered siRNA GlycoNPs were capable of targeting c-Myc gene expression (a crucial regulator of cell proliferation and apoptosis) via in vivo RNAi in tumour tissue, leading to an similar to 80% reduction in tumour size without associated inflammation.

Veigas, B, Pedrosa P, Carlos {FF }, Mancio-Silva L, Grosso {AR}, Fortunato E, Mota {MM }, Baptista P.  2015.  One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care, aug. Journal of Nanobiotechnology. 13, Number 1: BioMed Central (BMC) Abstract

Background: Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may also been used for parallel detection of several targets to provide additional information on diagnostics of pathogens.Results: For the first time, we demonstrate that a single Au-nanoprobe may provide for detection of two distinct targets (pathogens) allowing colorimetric multi-target detection. We demonstrate this concept by using one single gold-nanoprobe capable to detect members of the Mycobacterium tuberculosis complex and Plasmodium sp., the etiologic agents of tuberculosis and malaria, respectively. Following characterisation, the developed gold-nanoprobe allowed detection of either target in individual samples or in samples containing both DNA species with the same efficacy.Conclusions: Using one single probe via the non-cross-linking colorimetric methodology it is possible to identify multiple targets in one sample in one reaction. This proof-of-concept approach may easily be integrated into sensing platforms allowing for fast and simple multiplexing of Au-nanoprobe based detection at point-of-need.

Veigas, B, Baptista {PMRV}, Fortunato E.  2015.  Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives, may. Sensors. 15:10380–10398., Number 5: MDPI - Multidisciplinary Digital Publishing Institute Abstract

In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FETs' greater signal-to-noise ratio, fast measurement capabilities, and possibility to be included in portable instrumentation. Reliable molecular characterization of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. FET biosensors may become a relevant tool for molecular diagnostics and at point-of-care. The development of these devices and strategies should be carefully designed, as biomolecular recognition and detection events must occur within the Debye length. This limitation is sometimes considered to be fundamental for FET devices and considerable efforts have been made to develop better architectures. Herein we review the use of field effect sensors for nucleic acid detection strategiesfrom production and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics lab.

Larguinho, M, Canto R, Cordeiro M, Pedrosa P, Fortuna A, Vinhas R, Baptista {PMRV}.  2015.  Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics, oct. Expert Review Of Molecular Diagnostics. 15:1355–1368., Number 10: Expert Reviews Abstract

Non-crosslinking (NCL) approaches using DNA-modified gold nanoparticles for molecular detection constitute powerful tools with potential implications in clinical diagnostics and tailored medicine. From detection of pathogenic agents to identification of specific point mutations associated with health conditions, these methods have shown remarkable versatility and simplicity. Herein, the NCL hybridization assay is broken down to the fundamentals behind its assembly and detection principle. Gold nanoparticle synthesis and derivatization is addressed, emphasizing optimal size homogeneity and conditions for maximum surface coverage, with direct implications in downstream detection. The detection principle is discussed and the advantages and drawbacks of different NCL approaches are discussed. Finally, NCL-based applications for molecular detection of clinically relevant loci and potential integration into more complex biosensing platforms, projecting miniaturization and portability are addressed.

Child, {HW}, Hernandez Y, Conde J, Mullin M, Baptista P, {Maria de la Fuente} J, Berry {CC}.  2015.  Gold nanoparticle-siRNA mediated oncogene knockdown at RNA and protein level, with associated gene effects. Nanomedicine. 10:2513–2525., Number 16: Future Medicine Ltd. Abstract

Aims: RNAi is a powerful tool for gene silencing that can be used to reduce undesirable overexpression of oncogenes as a novel form of cancer treatment. However, when using RNAi as a therapeutic tool there is potential for associated gene effects. This study aimed to utilize gold nanoparticles to deliver siRNA into HeLa cells. Results: Knockdown of the c-myc oncogene by RNAi, at the RNA, protein and cell proliferation level was achieved, while also identifying associated gene responses. Discussion: The gold nanoparticles used in this study present an excellent delivery platform for siRNA, but do note associated gene changes. Conclusion: The study highlights the need to more widely assess the cell physiological response to RNAi treatment, rather than focus on the immediate RNA levels.

Martins, P, Jesus J, Santos S, Raposo {LR }, Roma-Rodrigues C, Baptista {PMRV}, de Fernandes {MANCR}.  2015.  Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine's tool Box, sep. Molecules. 20:16852–16891., Number 9: MDPI - Multidisciplinary Digital Publishing Institute Abstract

The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.

Veigas, B, Portugal C, Valério R, Fortunato E, Crespo {JG }, Baptista P.  2015.  Scalable approach for the production of functional DNA based gold nanoprobes, oct. Journal of Membrane Science. 492:528–535.: Elsevier Abstract

Nanoparticle based systems, in particular gold nanoparticles (AuNPs), provide for simple calorimetric detection of molecular biomarkers, such as DNA, RNA. These systems rely on the functionalization of AuNPs with ssDNA oligonucleotides requiring strenuous laboratory centrifugation steps not compatible with industrial scale up. Here, we demonstrate the potential of dia-ultrafiltration for purification of Au-nanoprobes. We show that dia-ultrafiltration can be regarded as better alternative to centrifugation, allowing for a less intensive sample manipulation, easier transposable to the industrial scale. The purification of AuNPs was performed by dia-ultrafiltration using membranes of regenerated cellulose with a nominal molecular weight cut-off (MWCO) of 10 kDa and a processing strategy which combined subsequent AuNPs cleaning and concentration steps. instead of the permeation flux decline typically found in ultrafiltration processes operated under concentration modes, purification of Au-nanoprobes by dia-ultrafiltration was followed by a subtle increase of the permeation fluxes. This effect was ascribed to improved external mass transfer conditions near the membrane surface, prompted by the decrease of the overall solute concentration in the retentate over the process Lime. This strategy allowed for the total retention of the AuNPS, yielding nanoprobes capable of higher signal to noise ratios. Proof-of-concept was directed at the synthesis of Au-nanoprobes for identification of members of the Mycobacterium tuberculosis complex that cause tuberculosis in humans. (C) 2015 Elsevier B.V. All rights reserved.

Mendo, {AS}, Figueiredo S, Roma-Rodrigues C, Videira {PA }, Ma Z, Diniz M, Larguinho M, Costa PM, Lima {JC }, Pombeiro {AJL }, Baptista {PV}, Fernandes {AR}.  2015.  Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine, sep. JBIC Journal of Biological Inorganic Chemistry. 20:935–948., Number 6: Springer Abstract

Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)(2)}L](NO3)(2) incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.

Bernacka-Wojcik, I, Águas H, Carlos {FF}, Lopes P, Wojcik {PJ}, Costa {MN}, Veigas B, Igreja R, Fortunato E, Baptista P, Martins R.  2015.  Single Nucleotide Polymorphism Detection Using Gold Nanoprobes and Bio-Microfluidic Platform With Embedded Microlenses, jun. Biotechnology and Bioengineering. 112:1210–1219., Number 6: Wiley-Blackwell Abstract

The use of microfluidics platforms combined with the optimal optical properties of gold nanopartides has found plenty of application in molecular biosensing. This paper describes a biotnicrofluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/mu l below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/mu l) with 10 times lower solution volume (i.e., 3 mu l.). A set of optimization of our previously reported bio-microfluidic platform (Bemacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanopartides, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' cobrimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical micmscope to a digital camera with a long exposure time (30s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates). (C) 2015 Wiley Periodicals, Inc.

Pedrosa, P, Vinhas R, de Fernandes {MANCR}, Baptista {PMRV}.  2015.  Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?, dec Nanomaterials. 5:1853–1879., Number 4: MDPI AG Abstract

Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial-nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.

Vinhas, R, Correia C, Ribeiro P, Lourenco A, Sousa A, Fernandes A, Baptista P.  2015.  GOLD NANOPROBES IN THE DIAGNOSTIC OF CHRONIC MYELOID LEUKEMIA: DETECTION OF THE E14A2 BCR-ABL TRANSCRIPT DIRECTLY IN RNA SAMPLES, apr. Leukemia research. 39:S90–S90.: PERGAMON-ELSEVIER SCIENCE LTD Abstract
n/a
Restani, {RB }, Conde J, Pires {RF }, Martins P, Fernandes {AR}, Baptista {PV}, Bonifacio {VDB }, Aguiar-Ricardo A.  2015.  POxylated Polyurea Dendrimers: Smart Core-Shell Vectors with IC50 Lowering Capacity, aug. Macromolecular Bioscience. 15:1045–1051., Number 8: WILEY-V C H VERLAG GMBH Abstract

The design and preparation of highly efficient drug delivery platforms using green methodologies is at the forefront of nanotherapeutics research. POxylated polyurea dendrimers are efficiently synthesized using a supercritical-assisted polymerization in carbon dioxide. These fluorescent, pH-responsive and water-soluble core-shell smart nanocarriers show low toxicity in terms of cell viability and absence of glutathione depletion, two of the major side effect limitations of current vectors. The materials are also found to act as good transfection agents, through a mechanism involving an endosomal pathway, being able to reduce 100-fold the IC50 of paclitaxel.

Larguinho, M, Santos S, Almeida J, Baptista P.  2015.  DNA adduct identification using gold-aptamer nanoprobes, apr. Iet Nanobiotechnology. 9:95–101., Number 2: INST ENGINEERING TECHNOLOGY-IET Abstract

The optical and physico-chemical properties of gold nanoparticles (AuNPs) have prompted new and improved approaches which have greatly evolved the fields of biosensing and molecular detection. In this study, the authors took advantage of AuNPs' ease of modification and functionalised it with selected DNA aptamers using a salt aging method to produce gold-aptamer nanoprobes. After characterisation, these nanoprobes were subsequently used for biomolecular detection of glycidamide (GA)-guanine (Gua) adducts generated in vitro. The results are based on differences in nanoprobe stabilisation against salt-induced aggregation, similar to the non-cross-linking method developed by Baptista for discrimination of specific sequences. Alkylated Guas were efficiently discriminated from deoxyguanosine and GA in solution. Despite this, a clear identification of DNA adducts derived from genomic DNA alkylation has proven to be a more challenging task.

Conde, J, Ambrosone A, Hernandez Y, Tian F, McCully M, Berry {CC }, Baptista {PMRV}, Tortiglione C, {de la Fuente} {JM }.  2015.  15 years on siRNA delivery: Beyond the State-of-the-Art on inorganic nanoparticles for RNAi therapeutics, aug. Nano today. 10:421–450., Number 4: ELSEVIER SCI LTD Abstract

RNAi has always captivated scientists due to its tremendous power to modulate the phenotype of living organisms. This natural and powerful biological mechanism can now be harnessed to downregulate specific gene expression in diseased cells, opening up endless opportunities. Since most of the conventional siRNA delivery methods are limited by a narrow therapeutic index and significant side and off-target effects, we are now in the dawn of a new age in gene therapy driven by nanotechnology vehicles for RNAi therapeutics. Here, we outlook the {"}do's and dont's{"} of the inorganic RNAi nanomaterials developed in the last 15 years and the different strategies employed are compared and scrutinized, offering important suggestions for the next 15. (C) 2015 Elsevier Ltd. All rights reserved.

Vinhas, R, Cordeiro M, Carlos {FF}, Mendo S, Fernandes {AR}, Figueiredo S, Baptista {PV}.  2015.  Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial, may. Nanobiosensors in Disease Diagnosis. 4:11–23.: Dove Medical Press Abstract

Nanotheranostics takes advantage of nanotechnology-based systems in order to diagnose and treat a specific disease. This approach is particularly relevant for personalized medicine, allowing the detection of a disease at an early stage, to direct a suitable therapy toward the target tissue based on the molecular profile of the altered phenotype, subsequently facilitating disease monitoring and following treatment. A tailored strategy also enables to reduce the off-target effects associated with universal treatments and improve the safety profile of a given treatment. The unique optical properties of gold nanoparticles, their ease of surface modification, and high surface-to-volume ratio have made them central players in this area. By combining imaging, targeting, and therapeutic agents in a single vehicle, these nanoconjugates are (ought to be) an important tool in the clinics. In this review, the multifunctionality of gold nanoparticles as theranostics agents will be highlighted, as well as the requirements before the translation of these nanoplatforms into routine clinical practice.

loading