Publications

Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O [P] Q R S T U V W X Y Z   [Show ALL]
A
Sutradhar, M., E. C. B. A. Alegria, F. Ferretti, L. R. Raposo, M. F. C. Guedes da Silva, P. V. Baptista, A. R. Fernandes, and A. J. L. Pombeiro. "Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers." J Inorg Biochem 200 (2019): 110811. AbstractWebsite

n/a

Veigas, B., D. Machado, J. Perdigão, I. Portugal, I. Couto, M. Viveiros, and P. V. Baptista. "Au-nanoprobes for detection of SNPs associated with antibiotic resistance in Mycobacterium tuberculosis." Nanotechnology 21 (2010): 415101. AbstractWebsite

n/a

Doria, G., J. T. Dias, M. Larguinho, E. Pereira, R. Franco, and P. Baptista. AuAg-alloy-nanoprobes for Specific Nucleic Acid Detection In NSTI-Nanotech 2010. Anaheim, CA, 2010.
C
Mendo, Ana Soraia, Sara Figueiredo, Catarina Roma-Rodrigues, Paula A. Videira, Zhen Ma, Mário Diniz, Miguel Larguinho, Pedro Costa, João C. Lima, Armando J. L. Pombeiro, Pedro V. Baptista, and Alexandra R. Fernandes. "Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine." JBIC Journal of Biological Inorganic Chemistry 2 (2015): 935-948. AbstractWebsite

Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)2}L](NO3)2 incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.

Baptista, P., G. Doria, D. Henriques, E. Pereira, and R. Franco. "Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles." Journal of Biotechnology 119 (2005): 111-117. Abstract

n/a

Pedrosa, Pedro, Rita Mendes, Rita Cabral, Luisa M. D. R. S. Martins, Pedro V. Baptista, and Alexandra R. Fernandes. "Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells." Scientific Reports 8 (2018). Abstract

n/a

Machado, Diana, Isabel Couto, João Perdigão, Liliana Rodrigues, Isabel Portugal, Pedro Baptista, Bruno Veigas, Leonard Amaral, and Miguel Viveiros. "Contribution of efflux to the emergence of isoniazid and multidrug resistance in Mycobacterium tuberculosis." PLoS ONE 7 (2012): e34538.
Vinhas, Raquel, Milton Cordeiro, Pedro Pedrosa, Alexandra R. Fernandes, and Pedro V. Baptista. "Current trends in molecular diagnostics of chronic myeloid leukemia." Leukemia & Lymphoma (2016): 1-14. AbstractWebsite

Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

D
Baptista, P., G. Doria, A. Matias, L. Osorio, E. Pereira, and F. Ricardo. Direct detection of mutations/SNPs using DNA-derivatised gold nanoparticles In Congress of Clinical Chemistry and Laboratory Medicine. Jena, Germany, 2005.
Reimão-Pinto, M. M., A. Cordeiro, C. Almeida, A. V. Pinheiro, A. Moro, J. C. Lima, and P. V. Baptista. "Dual-color control of nucleotide polymerization sensed by a fluorescence actuator." Photochem Photobiol Sci 13 (2014): 751-6. AbstractWebsite

n/a

E
Ribeiro, A. P. C., S. Anbu, E. C. B. A. Alegria, A. R. Fernandes, P. V. Baptista, R. Mendes, A. S. Matias, M. Mendes, M. F. C. Guedes da Silva, and A. J. L. Pombeiro. "Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles." Biomedicine & Pharmacotherapy 101 (2018): 137-144. AbstractWebsite

n/a

G
Giestas, Letícia, Vesselin Petrov, Pedro V. Baptista, and João Carlos Lima. "General FRET-based coding for application in multiplexing methods." Photochem. Photobiol. Sci. 8 (2009): 1130-1138.
Pedrosa, Pedro, and Pedro Viana Baptista. "Gold and silver nanoparticles for diagnostics of infection." In Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases, edited by Mahendra Rai and Kateryna Kon, 1-18. Elsevier, 2015. Abstract

Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases delivers comprehensive coverage of the application of nanotechnology to pressing problems in infectious disease.
This text equips readers with cutting-edge knowledge of promising developments and future prospects in nanotechnology, paying special attention to microbes that are now resistant to conventional antibiotics, a concerning problem in modern medicine.
Readers will find a thorough discussion of this new approach to infectious disease treatment, including the reasons nanotechnology presents a promising avenue for the diagnosis, treatment, and prophylaxis of infectious diseases.

Koziol-Montewka, M., J. Paluch-Oles, and P. Baptista. Gold nanoparticle probe-based diagnostic system for rapid and sensitive detection of Mycobacterium tuberculosis In Congress of Clinical Microbiology and Infectious Diseases. Nice, France, 2006.
Guirgis, Bassem S. S., Claudia Sa e Cunha, Ines Gomes, Miguel Cavadas, Isabel Silva, Goncalo Doria, Gregory L. Blatch, Pedro V. Baptista, Eulalia Pereira, Hassan M. E. Azzazy, Maria M. Mota, Miguel Prudencio, and Ricardo Franco. "Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection." Analytical and Bioanalytical Chemistry 402 (2012): 1019-1027. Abstract

n/a

Cordeiro, Mílton, Fábio Ferreira Carlos, Pedro Pedrosa, António Lopez, and Pedro Viana Baptista. "Gold Nanoparticles for Diagnostics: Advances towards Points of Care." Diagnostics 6 (2016): 43. AbstractWebsite

The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting.

Cordeiro, Milton, Fabio Ferreira Carlos, Pedro Pedrosa, Antonio Lopez, and Pedro Viana Baptista. "Gold Nanoparticles for Diagnostics: Advances towards Points of Care." Diagnostics 6 (2016). Abstract

n/a

Franco, Ricardo, Pedro Pedrosa, Fábio Ferreira Carlos, Bruno Veigas, and Pedro Viana Baptista. "Gold Nanoparticles for DNA/RNA-Based Diagnostics." In Handbook of Nanoparticles, 1-25. Berlin: Springer, 2015. Abstract

The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development
in exploring biomolecular interactions with AuNPs-containing systems, pursuing biomedical applications
in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of
DNA/RNA detection and characterization systems for diagnostics, including systems suitable for point of
need. Here, emphasis will be on available molecular detection schemes of relevant pathogens and their
molecular characterization, genomic sequences associated with medical conditions (including cancer),
mutation and polymorphism identification, and the quantification of gene expression.

Baptista, Pedro, Eulália Pereira, Peter Eaton, Gonçalo Doria, Adelaide Miranda, Inês Gomes, Pedro Quaresma, and Ricardo Franco. "Gold Nanoparticles for the Development of Clinical Diagnosis Methods." Anal Bioanal Chem. 391 (2008): 943-950.
Baptista, P., E. Pereira, P. Eaton, and al.et. "Gold nanoparticles for the development of clinical diagnosis methods." ANALYTICAL AND BIOANALYTICAL CHEMISTRY 391 (2008): 943-950. Abstract

n/a

Baptista, P., E. Pereira, P. Eaton, G. Doria, A. Miranda, I. Gomes, P. Quaresma, and R. Franco. "Gold nanoparticles for the development of clinical diagnosis methods." Anal Bioanal Chem 391 (2008): 943-50. AbstractWebsite

n/a

Ferreira, D., D. Fontinha, C. Martins, D. Pires, A. R. Fernandes, and P. V. Baptista. "Gold Nanoparticles for Vectorization of Nucleic Acids for Cancer Therapeutics." Molecules 25 (2020). AbstractWebsite

n/a

Larguinho, Miguel, Rafaela Canto, Milton Cordeiro, Pedro Pedrosa, Andreia Fortuna, Raquel Vinhas, and Pedro V. Baptista. "Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics." Expert Review of Molecular Diagnostics 15 (2015): 1355-1368. Abstract

n/a

Pedrosa, Pedro, Bruno Veigas, Diana Machado, Isabel Couto, Miguel Viveiros, and Pedro V. Baptista. "Gold nanoprobes for multi loci assessment of multi-drug resistant tuberculosis." Tuberculosis 94 (2014): 332-337. AbstractWebsite

Tuberculosis, still one of the leading human infectious diseases, reported 8.7 million new cases in 2011 alone. Also, the increasing rate of multidrug-resistant tuberculosis (MDRTB) and its treatment difficulties pose a serious public health threat especially in developing countries. Resistance to isoniazid and rifampicin, first line antibiotics, is commonly associated with point mutations in katG, inhA and rpoB genes of Mycobacterium tuberculosis complex (MTBC). Therefore, the development of cheap, fast and simple molecular methods to assess susceptibility profiles would have a huge impact in the capacity of early diagnosis and treatment of MDRTB.

Gold nanoparticles functionalized with thiol-modified oligonucleotides (Au-nanoprobes) have shown the potential to provide a rapid and sensitive detection method for MTBC and single base mutations associated with antibiotic resistance, namely the characterization of the three most relevant codons in rpoB gene associated to rifampicin resistance. Here we extend the Au-nanoprobe approach towards discriminating specific mutations within inhA and rpoB genes in PCR amplified DNA from isolates. Using a multiplex PCR reaction for these two genes, it is possible to assess both loci in parallel, and extend the potential of the Au-nanoprobe method to MDRTB molecular characterization with special application in the most frequent Portuguese genotypes.

Pedrosa, Pedro, Raquel Vinhas, Alexandra Fernandes, and Pedro V. Baptista. "Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?" Nanomaterials 5 (2015): 1853-1879. AbstractWebsite

Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial—nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.