Export 4103 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Skumiel, A, Kocansky P, Timko M, Molcan M, Paulovicova K, Wojciechowski R.  2022.  The Influence of a Rotating Magnetic Field on the Thermal Effect in Magnetic Fluid. International Journal of Thermal Sciences. 171(107258)
Siposova, K, Petrenko VI, Garcarova I, Sedlakova D, Almasy L, Kyzyma OA, Kriechbaum M, Musatov A.  2022.  The intriguing dose-dependent effect of selected amphiphilic compounds on insulin amyloid aggregation: Focus on a cholesterol-based detergent. Chobimalt. 9(955282)
Pauleta, SR, Carepo M, Grazina R, Moura I, Moura JJG.  2022.  Iron-Sulfur centers: Functions of an ancient metal site. Comprehensive Inorganic Chemistry III From Biology to Nanotechnology, vol. 2. (Vincent Pecoraro and Zijian Guo, Ed.).:???., ???: ???
Ramou, E, Palma SICJ, Roque ACA.  2022.  Nanoscale Events on Cyanobiphenyl-Based Self-Assembled Droplets Triggered by Gas Analytes. ACS Applied Materials and Interfaces. 14(4):6261-6273.PDF
B.K., M, J.J.G. M.  2022.  Native Protein Template Assisted Synthesis of Non-Native Metal-Sulfur Clusters. BioChem. 2:182-197.
Panigrahi, S, Calmeiro T, Mendes MJ, Águas H, Fortunato E, Martins R.  2022.  Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatment. Journal of Physical Chemistry C. 126(45):19367–19375.
Haque, S, Alexandre M, Baretzky C, Rossi D, Rossi FD, Vicente AT, Brunetti F, Águas H, Ferreira RAS, Fortunato E, Maur MAD, Wurfel U, Martins R, Mendes MJ.  2022.  Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics. 9(7):2408–2421.
Ramos, A, Isufi B, Marreiros R, Bolesova M, Gajdsova K.  2022.  Rational Use of FPFRC in Slab-Connections Under Reversed Horizontal Cyclic Loading. Engineering Structures. Accepted for publication Abstract

Slab – column connections that are subjected to combined gravity and horizontal loading during an earthquake are prone to premature failure due to punching shear. Traditional solutions to avoid punching failure and to increase the displacement capacity of this type of connection include using stirrups and double-headed studs as shear reinforcement. The use of High-Performance Fiber Reinforced Concrete (HPFRC) in a small region of the slab around the column as a substitute for traditional solutions is investigated in this paper, because this material has the potential to reduce labor and material costs. To fulfill this objective, four slab specimens with a thickness of 150 mm were tested under combined gravity and reversed horizontal drifts. The results are discussed in detail. The experimental variables considered were the top flexural reinforcement ratio, the size of the HPFRC zone and the intensity of the gravity load. Previously published tests that serve as reference specimens are used to compare the results. The behavior of the specimens with HPFRC was substantially improved compared to the reference specimens in terms of drift capacity: from only 1.0% drift to above 5.5%, even though a very small quantity of HPFRC was used, extended up to only 1.5 times the effective depth of the slab from the face of the column. Specimens with HPFRC also behaved better when compared to specimens with High-Strength Concrete (HSC). Side effects of using HPFRC in the slab in the vicinity of the column include an increase of the unbalanced moment transfer capacity and lateral stiffness, as well as a reduction of the deflections of the slab.

Karamash, M, Stumpe M, Dengjel J, Salgueiro CA, Giese B, Fromm KM.  2022.  Reduction Kinetic of Water Soluble Metal Salts by Geobacter sulfurreducens: Fe2+/Hemes Stabilize and Regulate Electron Flux Rates. Frontiers in Microbiology. 13 AbstractWebsite

Geobacter sulfurreducens is a widely applied microorganism for the reduction of toxic metal salts, as an electron source for bioelectrochemical devices, and as a reagent for the synthesis of nanoparticles. In order to understand the influence of metal salts, and of electron transporting, multiheme c-cytochromes on the electron flux during respiration of G. sulfurreducens, the reduction kinetic of Fe3+, Co3+, V5+, Cr6+, and Mn7+ containing complexes were measured. Starting from the resting phase, each G. sulfurreducens cell produced an electron flux of 3.7 × 105 electrons per second during the respiration process. Reduction rates were within ± 30% the same for the 6 different metal salts, and reaction kinetics were of zero order. Decrease of c-cytochrome concentrations by downregulation and mutation demonstrated that c-cytochromes stabilized respiration rates by variation of their redox states. Increasing Fe2+/heme levels increased electron flux rates, and induced respiration flexibility. The kinetic effects parallel electrochemical results of G. sulfurreducens biofilms on electrodes, and might help to optimize bioelectrochemical devices.

M.J., N, G.N. V, A. S‐A, J.J.G. M, C. R, Sousa JP, C.M. C.  2022.  Screen‐Printed Electrodes Testing for Detection of Potential Stress Biomarkers in Sweat. Electrocatalysis. 13:299–305.
Isufi, B, Almeida A, Marreiros R, Ramos A, Lúcio V.  2022.  Slab – column connection punching and ductility improvement methods for seismic response of buildings with flat slabs. Structural Concrete. 23:1385–1398.Website
Sarnatskaya, V, Shlapa Y, Lykhova A, Brieieva O, Prokopenko I, Sidorenko A, Solopan S, Kolesnik D, Belous A, Nikolaev V.  2022.  Structure and Biological Activity of Particles Produced from Highly Activated Carbon Adsorbent. Heliyon. 8(3)
Maiti, BK, Maia LB, Moura JJG.  2022.  Sulfide and transition metals - A partnership for life. J Inorg Biochem. 227:111687.Website
https://aip.scitation.org/doi/full/10.1063/5.0073056.  2022.  Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks. APL material. (10):1.
Relvas, JP.  2022.  Utilização Racional de Betões de Alta Resistência Reforçados com Fibras de Aço em Lajes Fungiformes. NOVA School of Science and Technology. (António Pinho Ramos, Brisid Isufi, Eds.)., Caparica
Gonçalves, AM, Sousa Â, Pedro AQ, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA.  2022.  Advances in Membrane-Bound Catechol-O-Methyltransferase Stability Achieved Using a New Ionic Liquid-Based Storage Formulation. International Journal of Molecular Sciences. 23, Number 13 AbstractWebsite

Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson’s disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs’ design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at −80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.

Pinto, F, Lourenço AF, Pedrosa JFS, Gonçalves L, Ventura C, Vital N, Bettencourt A, Fernandes SN, da Rosa RR, Godinho MH, Louro H, Ferreira PJT, Silva MJ.  2022.  Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. Nanomaterials. 12, Number 9 AbstractWebsite

Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.

Antunes, JMA, Silva MA, Salgueiro CA, Morgado L.  2022.  Electron Flow From the Inner Membrane Towards the Cell Exterior in Geobacter sulfurreducens: Biochemical Characterization of Cytochrome CbcL. Frontiers in Microbiology. 13 AbstractWebsite

Exoelectrogenic microorganisms are in the spotlight due to their unique respiratory mechanisms and potential applications in distinct biotechnological fields, including bioremediation, bioenergy production and microbial electrosynthesis. These applications rely on the capability of these microorganisms to perform extracellular electron transfer, a mechanism that allows the bacteria to transfer electrons to the cell’s exterior by establishing functional interfaces between different multiheme cytochromes at the inner membrane, periplasmic space, and outer membrane. The multiheme cytochrome CbcL from Geobacter sulfurreducens is associated to the inner membrane and plays an essential role in the transfer of electrons to final electron acceptors with a low redox potential, as Fe(III) oxides and electrodes poised at −100 mV. CbcL has a transmembranar di-heme b-type cytochrome domain with six helices, linked to a periplasmic cytochrome domain with nine c-type heme groups. The complementary usage of ultraviolet-visible, circular dichroism and nuclear magnetic resonance permitted the structural and functional characterization of CbcL’s periplasmic domain. The protein was found to have a high percentage of disordered regions and its nine hemes are low-spin and all coordinated by two histidine residues. The apparent midpoint reduction potential of the CbcL periplasmic domain was determined, suggesting a thermodynamically favorable transfer of electrons to the putative redox partner in the periplasm − the triheme cytochrome PpcA. The establishment of a redox complex between the two proteins was confirmed by probing the electron transfer reaction and the molecular interactions between CbcL and PpcA. The results obtained show for the first time how electrons are injected into the periplasm of Geobacter sulfurreducens for subsequent transfer to the cell’s exterior.

Salgueiro, CA, Morgado L, Silva MA, Ferreira MR, Fernandes TM, Portela PC.  2022.  From iron to bacterial electroconductive filaments: Exploring cytochrome diversity using Geobacter bacteria. Coordination Chemistry Reviews. 452:214284. AbstractWebsite

Iron is the most versatile of all biochemically active metals, with variability encompassing its electronic configuration, number of unpaired electrons, type of ligands and iron-complexes stability. The versatility of iron properties is transposed to the proteins it can be associated to, especially relevant in the case of heme proteins. In this Review, the structural and functional properties of heme proteins are revisited, with particular focus on c-type cytochromes. The genome of Geobacter bacteria encodes for an unusually high number of assorted c-type cytochromes and, for this reason, they are used in this Review as a showcase of the cytochrome diversity. In the last decades, a vast portfolio of cytochromes has been revealed in these bacteria, with most of them defining new classes, ranging from monoheme to the recently identified polymeric assembly of multiheme cytochromes that forms micrometer-long electrically conductive filaments. These discoveries were on pace with the development of modern NMR equipment and advances in protein isotopic labeling methods, which are also revisited in this Review. Finally, following the description of the current state of the art of Geobacter cytochromes, examples on how the available structural and functional information was explored to structurally map protein–protein and protein–ligand interacting regions in redox complexes, and hence elucidate Geobacter’s respiratory pathways, are presented.

Ventura, C, Marques C, Cadete J, Vilar M, Pedrosa JFS, Pinto F, Fernandes SN, da Rosa RR, Godinho MH, Ferreira PJT, Louro H, Silva MJ.  2022.  Genotoxicity of Three Micro/Nanocelluloses with Different Physicochemical Characteristics in MG-63 and V79 Cells. Journal of Xenobiotics. 12:91–108., Number 2 AbstractWebsite

(1) Background: Nanocellulose is an innovative engineered nanomaterial with an enormous potential for use in a wide array of industrial and biomedical applications and with fast growing economic value. The expanding production of nanocellulose is leading to an increased human exposure, raising concerns about their potential health effects. This study was aimed at assessing the potential toxic and genotoxic effects of different nanocelluloses in two mammalian cell lines; (2) Methods: Two micro/nanocelluloses, produced with a TEMPO oxidation pre-treatment (CNFs) and an enzymatic pre-treatment (CMFs), and cellulose nanocrystals (CNCs) were tested in osteoblastic-like human cells (MG-63) and Chinese hamster lung fibroblasts (V79) using the MTT and clonogenic assays to analyse cytotoxicity, and the micronucleus assay to test genotoxicity; (3) Results: cytotoxicity was observed by the clonogenic assay in V79 cells, particularly for CNCs, but not by the MTT assay; CNF induced micronuclei in both cell lines and nucleoplasmic bridges in MG-63 cells; CMF and CNC induced micronuclei and nucleoplasmic bridges in MG-63 cells, but not in V79 cells; (4) Conclusions: All nanocelluloses revealed cytotoxicity and genotoxicity, although at different concentrations, that may be related to their physicochemical differences and availability for cell uptake, and to differences in the DNA damage response of the cell model.

Ferreira, MR, Fernandes TM, Turner DL, Salgueiro CA.  2022.  Molecular geometries of the heme axial ligands from the triheme cytochrome PpcF from Geobacter metallireducens reveal a conserved heme core architecture. Archives of Biochemistry and Biophysics. 723:109220. AbstractWebsite

Electroactive Geobacter bacteria can perform extracellular electron transfer and present a wide metabolic versatility. These bacteria reduce organic, toxic and radioactive compounds, and produce electric current while interacting with electrodes, making them interesting targets for numerous biotechnological applications. Their global electrochemical responses rely on an efficient interface between the inside and the cell's exterior, which is driven by the highly abundant periplasmic triheme PpcA-family cytochromes. The functional features of these cytochromes have been studied in G. sulfurreducens and G. metallireducens, and although they share a high degree of structural homology and sequence identity, their properties are quite distinct. In this work, the heme axial ligand geometries and the magnetic properties of PpcF from G. metallireducens were determined. The data obtained constitute important constraints for the determination of its solution structure in the oxidized state and indicate that the (i) heme core architecture; (ii) axial ligands geometries and (iii) magnetic properties of the cytochrome are conserved compared to the other members of the PpcA-families. Furthermore, the results also indicate that the heme arrangement is crucial to maintain an intrinsic regulation of the protein's redox properties and hence its electron transfer efficiency and functionality.

Moreira, IP, Esteves C, Palma SICJ, Ramou E, Carvalho ALM, Roque ACA.  2022.  Synergy between silk fibroin and ionic liquids for active gas-sensing materials. Materials Today Bio. :100290. AbstractWebsite

Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2–10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.