Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes

Morgado, L, Salgueiro CA.  2022.  Elucidation of complex respiratory chains: a straightforward strategy to monitor electron transfer between cytochromes, 02. Metallomics.


{Cytochromes are electron transfer proteins essential in various biological systems, playing crucial roles in the respiratory chains of bacteria. These proteins are particularly abundant in electrogenic microorganisms and are responsible for the efficient delivery of electrons to the cells’ exterior. The capability of sending electron outside the cells open new avenues to be explored for emerging biotechnological applications in bioremediation, microbial electrosynthesis and bioenergy fields. To develop these applications, it is critical to identify the different redox partners and elucidate the stepwise electron transfer along the respiratory paths. However, investigating direct electron transfer events between proteins with identical features in nearly all spectroscopic techniques is extremely challenging. NMR spectroscopy offers the possibility to overcome this difficulty by analysing the alterations of the spectral signatures of each protein caused by electron exchange events. The uncrowded NMR spectral regions containing the heme resonances of the cytochromes display unique and distinct signatures in the reduced and oxidized states, which can be explored to monitor electron transfer within the redox complex. In this study, we present a strategy for a fast and straightforward monitorization of electron transfer between c-type cytochromes, using as model a triheme periplasmic cytochrome (PpcA) and a membrane associated monoheme cytochrome (OmcF) from the electrogenic bacterium Geobacter sulfurreducens. The comparison between the 1D 1H NMR spectra obtained for samples containing the two cytochromes and for samples containing the individual proteins clearly demonstrated a unidirectional electron transfer within the redox complex. This strategy provides a simple and straightforward means to elucidate complex biologic respiratory electron transfer chains.}



Related External Link