Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
2021
Rodrigo, {AP }, Grosso {AR }, Baptista {PV}, Fernandes {AR}, Costa {PM }.  2021.  A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid, jan. Toxins. 13, Number 2: MDPI - Multidisciplinary Digital Publishing Institute Abstract

The growing number of known venomous marine invertebrates indicates that chemical warfare plays an important role in adapting to diversified ecological niches, even though it remains unclear how toxins fit into the evolutionary history of these animals. Our case study, the Polychaeta Eulalia sp., is an intertidal predator that secretes toxins. Whole-transcriptome sequencing revealed proteinaceous toxins secreted by cells in the proboscis and delivered by mucus. Toxins and accompanying enzymes promote permeabilization, coagulation impairment and the blocking of the neuromuscular activity of prey upon which the worm feeds by sucking pieces of live flesh. The main neurotoxins ({"}phyllotoxins{"}) were found to be cysteine-rich proteins, a class of substances ubiquitous among venomous animals. Some toxins were phylogenetically related to Polychaeta, Mollusca or more ancient groups, such as Cnidaria. Some toxins may have evolved from non-toxin homologs that were recruited without the reduction in molecular mass and increased specificity of other invertebrate toxins. By analyzing the phylogeny of toxin mixtures, we show that Polychaeta is uniquely positioned in the evolution of animal venoms. Indeed, the phylogenetic models of mixed or individual toxins do not follow the expected eumetazoan tree-of-life and highlight that the recruitment of gene products for a role in venom systems is complex.

Sequeira, D, Baptista {PV}, Valente R, Piedade F{MMM }, Garcia H}{M, Morais {TS }, Fernandes {AR}.  2021.  Cu(i) complexes as new antiproliferative agents against sensitive and doxorubicin resistant colorectal cancer cells: synthesis, characterization, and mechanisms of action, feb. Dalton Transactions. 50:1845–1865., Number 5: RSC - Royal Society of Chemistry Abstract

Cancer is one of the worst health issues worldwide, representing the second leading cause of death. Current chemotherapeutic drugs face some challenges like the acquired resistance of the tumoral cells and low specificity leading to unwanted side effects. There is an urgent need to develop new compounds that may target resistant cells. The synthesis and characterization of two Cu(i) complexes of general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand (triphenylphosphine or 1,2-bis(diphenylphosphano) ethane) and LL = is a heteroaromatic bidentate ligand (4,4′-dimethyl-2,2′-bipyridine and 6,3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine). The new compounds were fully characterized by spectroscopic techniques (NMR, FTIR and UV-vis.), elemental analysis (C, H, N and S) and two structures were determined by single X-ray diffraction studies. The antiproliferative potential of the new Cu(i) complexes were studied in tumor (breast adenocarcinoma, ovarian carcinoma and in colorectal carcinoma sensitive and resistant to doxorubicin) and normal (fibroblasts) cell lines. Complexes1-4did not show any antiproliferative potential. Amongst the complexes5-8, complex8shows high cytotoxic potential against colorectal cancer sensitive and resistant to doxorubicin and low cytotoxicity towards healthy cells. We show that complexes5-8can cleave pDNA and, in particular, thein vitropDNA cleavage is due to an oxidative mechanism. This oxidative mechanism corroborates the induction of reactive oxygen species (ROS), that triggers HCT116 cell deathviaapoptosis, as proved by the increased expression of BAX protein relative to BCL-2 protein and the depolarization of mitochondrial membrane potential, andviaautophagy. Additionally, complex8can block the cell cycle in the G1 phase, also exhibiting a cytostatic potential. Proteomic analysis confirmed the apoptotic, autophagic and cytostatic potential of complex8, as well as its ability to produce ROS and cause DNA damage. The interference of the complex in folding and protein synthesis and its ability to cause post-translational modifications was also verified. Finally, it was observed that the complex causes a reduction in cellular metabolism. The results herein demonstrated the potential of Cu(i) complexes in targeting doxorubicin sensitive and resistant cells which is positive and must be further explored usingin vivoanimal models.

Correia, VG, Trovão F, Pinheiro BA, Brás JLA, Silva LM, Nunes C, Coimbra MA, Liu Y, Feizi T, Fontes CMGA, Mulloy B, Chai W, Carvalho AL, Palma AS.  2021.  Mapping Molecular Recognition of β1,3-1,4-Glucans by a Surface Glycan-Binding Protein from the Human Gut Symbiont Bacteroides ovatus, December. Microbiology spectrum. 9:e0182621., Number 3 AbstractWebsite

A multigene polysaccharide utilization locus (PUL) encoding enzymes and surface carbohydrate (glycan)-binding proteins (SGBPs) was recently identified in prominent members of <i>Bacteroidetes</i> in the human gut and characterized in Bacteroides ovatus. This PUL-encoded system specifically targets mixed-linkage β1,3-1,4-glucans, a group of diet-derived carbohydrates that promote a healthy microbiota and have potential as prebiotics. The BoSGBP<sub>MLG</sub>-A protein encoded by the <i>BACOVA_2743</i> gene is a SusD-like protein that plays a key role in the PUL's specificity and functionality. Here, we perform a detailed analysis of the molecular determinants underlying carbohydrate binding by BoSGBP<sub>MLG</sub>-A, combining carbohydrate microarray technology with quantitative affinity studies and a high-resolution X-ray crystallography structure of the complex of BoSGBP<sub>MLG</sub>-A with a β1,3-1,4-nonasaccharide. We demonstrate its unique binding specificity toward β1,3-1,4-gluco-oligosaccharides, with increasing binding affinities up to the octasaccharide and dependency on the number and position of β1,3 linkages. The interaction is defined by a 41-Å-long extended binding site that accommodates the oligosaccharide in a mode distinct from that of previously described bacterial β1,3-1,4-glucan-binding proteins. In addition to the shape complementarity mediated by CH-π interactions, a complex hydrogen bonding network complemented by a high number of key ordered water molecules establishes additional specific interactions with the oligosaccharide. These support the twisted conformation of the β-glucan backbone imposed by the β1,3 linkages and explain the dependency on the oligosaccharide chain length. We propose that the specificity of the PUL conferred by BoSGBP<sub>MLG</sub>-A to import long β1,3-1,4-glucan oligosaccharides to the bacterial periplasm allows <i>Bacteroidetes</i> to outcompete bacteria that lack this PUL for utilization of β1,3-1,4-glucans. <b>IMPORTANCE</b> With the knowledge of bacterial gene systems encoding proteins that target dietary carbohydrates as a source of nutrients and their importance for human health, major efforts are being made to understand carbohydrate recognition by various commensal bacteria. Here, we describe an integrative strategy that combines carbohydrate microarray technology with structural studies to further elucidate the molecular determinants of carbohydrate recognition by BoSGBP<sub>MLG</sub>-A, a key protein expressed at the surface of Bacteroides ovatus for utilization of mixed-linkage β1,3-1,4-glucans. We have mapped at high resolution interactions that occur at the binding site of BoSGBP<sub>MLG</sub>-A and provide evidence for the role of key water-mediated interactions for fine specificity and affinity. Understanding at the molecular level how commensal bacteria, such as prominent members of <i>Bacteroidetes</i>, can differentially utilize dietary carbohydrates with potential prebiotic activities will shed light on possible ways to modulate the microbiome to promote human health.

Pinto, A, Roma-Rodrigues C, Ward {JS }, Puttreddy R, Rissanen K, Baptista {PV}, Fernandes {AR}, Lima {JC}, Rodríguez L.  2021.  Aggregation versus Biological Activity in Gold(I) Complexes. An Unexplored Concept, dec. Inorganic Chemistry. 60:18753–18763., Number 24: ACS - American Chemical Society Abstract

The aggregation process of a series of mono- and dinuclear gold(I) complexes containing a 4-ethynylaniline ligand and a phosphane at the second coordination position (PR3-Au-CCC6H4-NH2, complexes 1-5, and (diphos)(Au-CCC6H4-NH2)2, complexes 6-8), whose biological activity was previously studied by us, has been carefully analyzed through absorption, emission, and NMR spectroscopy, together with dynamic light scattering and small-angle X-ray scattering. These experiments allow us to retrieve information about how the compounds enter the cells. It was observed that all compounds present aggregation in fresh solutions, before biological treatment, and thus they must be entering the cells as aggregates. Inductively coupled plasma atomic emission spectrometry measurements showed that mononuclear complexes are mainly found in the cytosolic fraction; the dinuclear complexes are mainly found in a subsequent fraction composed of nuclei and cytoskeleton. Additionally, dinuclear complex 8 affects the actin aggregation to a larger extent, suggesting a cooperative effect of dinuclear compounds.

Alves, D, Duarte S, Arsenio P, Goncalves J, Rodrigues CMP, Lourenco A, Maximo P.  2021.  Exploring the Phytochemicals of Acacia melanoxylon R. Br., DEC. PLANTS-BASEL. 10, Number 12 Abstract
n/a
Branco, S, Mateus EP, Richter Gomes da Silva MD, Mendes D, Araujo Pereira MM, Schuetz S, Paiva MR.  2021.  Olfactory responses of Anaphes nitens (Hymenoptera, Mymaridae) to host and habitat cues, AUG. JOURNAL OF APPLIED ENTOMOLOGY. 145:675-687., Number 7 Abstract

The eucalyptus weevil, Gonipterus spp. Schoenherr, 1833 (Coleoptera, Curculionidae) is considered a major pest of eucalyptus plantations. In regions where control is achieved, success is usually brought by the action of the solitary egg parasitoid Anaphes nitens (Girault, 1928) (Hymenoptera, Mymaridae). Research was conducted to ascertain which cues might mediate female wasp host location and selection. In Petri dish arenas, females were attracted to Gonipterus platensis Marelli, 1927 egg capsules, to G. platensis mated female faeces and to leaves of Eucalyptus globulus Labillardiere, 1799. Gas chromatography-mass spectrometry electroantennographic detection analysis was conducted using extracts obtained from leaves of E. globulus, from G. platensis egg capsules, as well as from adults of both sexes and their faeces, in order to detect and identify compounds perceived by the wasp's olfactory system. The parasitoids were shown to detect a wide range of compounds emitted by each one of these sources, and for 31 compounds, antennal response was confirmed by dose-response tests. Further behavioural trials were conducted in Petri dishes in order to decode the effect, on parasitoid behaviour, of selected compounds emitted by E. globulus and of the pheromones, emitted by the weevils on parasitoid behaviour. Attraction was observed to two compounds emitted by E. globulus, namely 1,8-cineole and gamma-terpinene, and to the main component of the male sex/aggregation pheromone, cis-verbenol. To our knowledge, this is the first report of attraction of a parasitoid from the family Mymaridae to a component of its host's sexual/aggregation pheromone. Similarly, to other egg parasitoid species, A. nitens females are likely to use the host plant volatiles as long-range host location cues and to adopt the `infochemical detour' strategy in order to get in the vicinity of their hosts.

Ferreira-Silva, M, Faria-Silva C, Baptista {PV}, Fernandes E, Fernandes {AR}, Corvo {ML}.  2021.  Drug delivery nanosystems targeted to hepatic ischemia and reperfusion injury, apr. Drug delivery and translational research. 11:397–410., Number 2: Springer Publishing Company Abstract

Abstract: Hepatic ischemia and reperfusion injury (IRI) is an acute inflammatory process that results from surgical interventions, such as liver resection surgery or transplantation, or hemorrhagic shock. This pathology has become a severe clinical issue, due to the increasing incidence of hepatic cancer and the high number of liver transplants. So far, an effective treatment has not been implemented in the clinic. Despite its importance, hepatic IRI has not attracted much interest as an inflammatory disease, and only a few reviews addressed it from a therapeutic perspective with drug delivery nanosystems. In the last decades, drug delivery nanosystems have proved to be a major asset in therapy because of their ability to optimize drug delivery, either by passive or active targeting. Passive targeting is achieved through the enhanced permeability and retention (EPR) effect, a main feature in inflammation that allows the accumulation of the nanocarriers in inflammation sites, enabling a higher efficacy of treatment than conventional therapies. These systems also can be actively targeted to specific compounds, such as inflammatory markers and overexpressed receptors in immune system intermediaries, allowing an even more specialized therapy that have already showed encouraging results. In this manuscript, we review drug delivery nanosystems designed for hepatic IRI treatment, addressing their current state in clinical trials, discussing the main hurdles that hinder their successful translation to the market and providing some suggestions that could potentially advance their clinical translation. Graphical abstract: [Figure not available: see fulltext.].

Paulino, C, Fernandes {AR}, Baptista {PV}, Soeiro C, Grosso {AR}, Quintas A.  2021.  Genetic predisposition for aggressive behaviour related with dopamine and serotonin pathways - an overview, apr. Annals of Medicine. 53:S77–S77., Number SI: Taylor & Francis Abstract
n/a
Couceiroa, J, Grosso {AR}, Baptista {PV}, Mendes {JJ }, Fernandes {AR}, Quintas A.  2021.  The genetic susceptibility linking preterm birth and periodontal disease a review, apr. Annals of Medicine. 53:S16–S17., Number SI: Taylor & Francis Abstract
n/a
Ferreira-Silva, M, Faria-Silva C, Baptista {PV}, Fernandes E, Fernandes {AR}, Corvo {ML}.  2021.  Liposomal nanosystems in rheumatoid arthritis, apr. Pharmaceutics. 13, Number 4: MDPI AG Abstract

Rheumatoid arthritis (RA) is an autoimmune disease that affects the joints and results in reduced patient quality of life due to its chronic nature and several comorbidities. RA is also associated with a high socioeconomic burden. Currently, several available therapies minimize symptoms and prevent disease progression. However, more effective treatments are needed due to current therapies’ severe side-effects, especially under long-term use. Drug delivery systems have demonstrated their clinical importance—with several nanocarriers present in the market—due to their capacity to improve therapeutic drug index, for instance, by enabling passive or active targeting. The first to achieve market authorization were liposomes that still represent a considerable part of approved delivery systems. In this manuscript, we review the role of liposomes in RA treatment, address preclinical studies and clinical trials, and discuss factors that could hamper a successful clinical translation. We also suggest some alterations that could potentially improve their progression to the market.

Isufi, B, Marreiros R, Ramos AP, Lúcio V.  2021.  Comportamento sísmico da ligação laje-pilar considerando diferentes soluções de reforço, 3-5 November. Reabilitar & Betão Estrutural 2020. , Lisbonfullpaperbe2020_pt_final.pdf
Rossi, M, Isufi B, Ramos AP.  2021.  Comportamento sísmico de ligações laje-pilar com variação da taxa de armadura de flexão, 3-5 November. Reabilitar & Betão Estrutural 2020. , Lisbon
Fialho, L, Araújo D, Alves VD, Roma-Rodrigues C, Baptista PV, Fernandes AR, Freitas F, Reis MAM.  2021.  Cation-mediated gelation of the fucose-rich polysaccharide FucoPol: preparation and characterization of hydrogel beads and their cytotoxicity assessment, 2021. International Journal of Polymeric Materials and Polymeric Biomaterials. 70(2):90-99. AbstractWebsite
n/a
Brás, NF, Neves RPP, Lopes FAA, Correia MAS, Palma AS, Sousa SF, Ramos MJ.  2021.  Combined in silico and in vitro studies to identify novel antidiabetic flavonoids targeting glycogen phosphorylase, 2021. 108:104552. AbstractWebsite

Novel pharmacological strategies for the treatment of diabetic patients are now focusing on inhibiting glycogenolysis steps. In this regard, glycogen phosphorylase (GP) is a validated target for the discovery of innovative antihyperglycemic molecules. Natural products, and in particular flavonoids, have been reported as potent inhibitors of GP at the cellular level. Herein, free-energy calculations and microscale thermophoresis approaches were performed to get an in-depth assessment of the binding affinities and elucidate intermolecular interactions of several flavonoids at the inhibitor site of GP. To our knowledge, this is the first study indicating genistein, 8-prenylgenistein, apigenin, 8-prenylapigenin, 8-prenylnaringenin, galangin and valoneic acid dilactone as natural molecules with high inhibitory potency toward GP. We identified: i) the residues Phe285, Tyr613, Glu382 and/or Arg770 as the most relevant for the binding of the best flavonoids to the inhibitor site of GP, and ii) the 5-OH, 7-OH, 8-prenyl substitutions in ring A and the 4′-OH insertion in ring B to favor flavonoid binding at this site. Our results are invaluable to plan further structural modifications through organic synthesis approaches and develop more effective pharmaceuticals for Type 2 Diabetes treatment, and serve as the starting point for the exploration of food products for therapeutic usage, as well as for the development of novel bio-functional food and dietary supplements/herbal medicines.

Raposo, LR, Silva A, Silva D, Roma-Rodrigues C, Espadinha M, Baptista PV, Santos MMM, Fernandes AR.  2021.  Exploiting the antiproliferative potential of spiropyrazoline oxindoles in a human ovarian cancer cell line, 2021. Bioorganic & Medicinal Chemistry. 30:115880. AbstractWebsite

Cancer is still one of the deadliest diseases worldwide despite the efforts in its early detection and treatment strategies. However, most chemotherapeutic agents still present side effects in normal tissues and acquired resistance that limit their efficacy. Spiropyrazoline oxindoles might be good alternatives as they have shown antiproliferative activity in human breast and colon cancer cell lines, without eliciting cytotoxicity in healthy cells. However, their potential for ovarian cancer was never tested. In this work, the antiproliferative activity of five spiropyrazoline oxindoles was assessed in ovarian cancer cells A2780 and the biological targets and mechanism of action of the most promising compound evaluated. Compound 1a showed the highest antiproliferative effect, as well as the highest selectivity for A2780 cells compared to healthy fibroblasts. This antiproliferative effect results from the induction of cell death by mitochondria-mediated apoptosis and autophagy. In vitro DNA interaction studies demonstrated that 1a interacts with DNA by groove-binding, without triggering genotoxicity. In addition, 1a showed a strong affinity to bovine serum albumin that might be important for further inclusion in drug delivery platforms. Proteomic studies reinforced 1a role in promoting A2780 endoplasmatic reticulum (ER) stress by destabilizing the correct protein folding which triggers cell death via apoptosis and autophagy.

Lapão, LV, Peyroteo M, Maia M, Seixas J, Gregório J, Mira da Silva M, Heleno B, Correia JC.  2021.  Implementation of Digital Monitoring Services During the COVID-19 Pandemic for Patients With Chronic Diseases: Design Science Approach, 2021. JMIR. 23(8):e24181. AbstractWebsite

Background: The COVID-19 pandemic is straining health systems and disrupting the delivery of health care services, in particular, for older adults and people with chronic conditions, who are particularly vulnerable to COVID-19 infection. Objective: The aim of this project was to support primary health care provision with a digital health platform that will allow primary care physicians and nurses to remotely manage the care of patients with chronic diseases or COVID-19 infections. Methods: For the rapid design and implementation of a digital platform to support primary health care services, we followed the Design Science implementation framework: (1) problem identification and motivation, (2) definition of the objectives aligned with goal-oriented care, (3) artefact design and development based on Scrum, (4) solution demonstration, (5) evaluation, and (6) communication. Results: The digital platform was developed for the specific objectives of the project and successfully piloted in 3 primary health care centers in the Lisbon Health Region. Health professionals (n=53) were able to remotely manage their first patients safely and thoroughly, with high degrees of satisfaction. Conclusions: Although still in the first steps of implementation, its positive uptake, by both health care providers and patients, is a promising result. There were several limitations including the low number of participating health care units. Further research is planned to deploy the platform to many more primary health care centers and evaluate the impact on patient’s health related outcomes.

Mota, C, Diniz A, Coelho C, Santos-Silva T, Esmaeeli M, Leimkühler S, Cabrita EJ, Marcelo F, Romão MJ.  2021.  Interrogating the Inhibition Mechanisms of Human Aldehyde Oxidase by X-ray Crystallography and NMR Spectroscopy: The Raloxifene Case, 2021. Journal of Medicinal ChemistryJournal of Medicinal Chemistry. : American Chemical Society AbstractWebsite

Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors—thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug–drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.Human aldehyde oxidase (hAOX1) is mainly present in the liver and has an emerging role in drug metabolism, since it accepts a wide range of molecules as substrates and inhibitors. Herein, we employed an integrative approach by combining NMR, X-ray crystallography, and enzyme inhibition kinetics to understand the inhibition modes of three hAOX1 inhibitors—thioridazine, benzamidine, and raloxifene. These integrative data indicate that thioridazine is a noncompetitive inhibitor, while benzamidine presents a mixed type of inhibition. Additionally, we describe the first crystal structure of hAOX1 in complex with raloxifene. Raloxifene binds tightly at the entrance of the substrate tunnel, stabilizing the flexible entrance gates and elucidating an unusual substrate-dependent mechanism of inhibition with potential impact on drug–drug interactions. This study can be considered as a proof-of-concept for an efficient experimental screening of prospective substrates and inhibitors of hAOX1 relevant in drug discovery.

Ali, MS, Muthukumaran J, Jain M, Santos-Silva T, Al-Lohedan HA, Al-Shuail NS.  2021.  Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations, 2021. 337:116354. AbstractWebsite

We investigated the binding of the cephalosporin-class drug cefoperazone (CFP) with bovine serum albumin (BSA) using spectroscopic techniques and in silico methods. The aim of this study was to (i) emphasize the importance of correcting for the inner filter effect in this type of study and (ii) understand the binding mechanism of CFP with BSA by addressing protein conformation and plausible binding sites. Formation of the complex was confirmed by UV–visible spectroscopy. Quenching of BSA fluorescence in the presence of CFP was also observed. Because of the high absorption of CFP in the fluorescence emission range of BSA, the fluorescence emission spectra were corrected for the inner filter effect. Fluorescence emission was studied at excitation wavelengths of 280 and 295 nm. The uncorrected data showed a significant contribution of tyrosine at the excitation wavelength of 280 nm; however, after correction, this contribution became negligible. The static-type mechanism was found to be involved in quenching, with almost 1:1 binding between BSA and CFP. Hydrogen bonding and hydrophobic forces were found to dominate the protein–ligand interactions with a slight decrease in the α-helical contents. Synchronous fluorescence spectral data (at Δλ = 15 and 60 nm) were also corrected for the inner filter effect, with the results being similar to those of excitation at 280 and 295 nm. Molecular docking and molecular dynamics (MD) simulation results suggest that, apart from the two known drug binding sites (drug site I and II), one putative binding site (binding site III) located between BSA domains 1 and 3 was also possible for CFP. MD simulations of the previously reported drug binding sites (drug site I and II) and putative binding site III revealed that binding site III showed excellent binding profiles and could be a target for future research related to BSA-drug binding.

Sine, A, Pimentel M, Nunes S.  2021.  Punching Shear Tests on RC Flat Slabs Strengthened with an UHPFRC Layer, 2021. fib Symposium 2021. , Lisbonsine-fib2021_169_punching.pdf
Pimentel, M, Sine A, Nunes S.  2021.  Resistência ao punçoamento de lajes fungiformes reforçadas com UHPFRC, 2021. Reabilitar & Betão Estrutural 2020. , Lisbonrbe2020_artigo_puncoamento_1.pdf
Goodfellow, BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis J-M, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL.  2021.  The SOUL family of heme-binding proteins: Structure and function 15 years later, 2021. 448:214189. AbstractWebsite

The SOUL, or heme-binding protein HBP/SOUL, family represents a group of evolutionary conserved putative heme-binding proteins that contains a number of members in animal, plant andbacterial species. The structures of the murine form of HEBP1, or p22HBP, and the human form of HEBP2, or SOUL, have been determined in 2006 and 2011 respectively. In this work we discuss the structures of HEBP1 and HEBP2 in light of new X-ray data for heme bound murine HEBP1. The interaction between tetrapyrroles and HEBP1, initially proven to be hydrophobic in nature, was thought to also involve electrostatic interactions between heme propionate groups and positively charged amino acid side chains. However, the new X-ray structure, and results from murine HEBP1 variants and human HEBP1, confirm the hydrophobic nature of the heme-HEBP1 interaction, resulting in Kd values in the low nanomolar range, and rules out any electrostatic stabilization. Results from NMR relaxation time measurements for human HEBP1 describe a rigid globular protein with no change in motional regime upon heme binding. X-ray structures deposited in the PDB for human HEBP2 are very similar to each other and to the new heme-bound murine HEBP1 X-ray structure (backbone rmsd ca. 1 Å). Results from a HSQC spectrum centred on the histidine side chain Nδ-proton region for HEBP2 confirm that HEBP2 does not bind heme via H42 as no chemical shift differences were observed upon heme addition for backbone NH and Nδ protons. A survey of the functions attributed to HEBP1 and HEBP2 over the last 20 years span a wide range of cellular pathways. Interestingly, many of them are specific to higher eukaryotes, particularly mammals and a potential link between heme release under oxidative stress and human HEBP1 is also examined using recent data. However, at the present moment, trying to relate function to the involvement of heme or tetrapyrrole binding, specifically, makes little sense with our current biological knowledge and can only be applied to HEBP1, as HEBP2 does not interact with heme. We suggest that it may not be justified to call this very small family of proteins, heme-binding proteins. The family may be more correctly called “the SOUL family of proteins related to cellular fate” as, even though only HEBP1 binds heme tightly, both proteins may be involved in cell survival and/or proliferation.

Lima, CDL, Coelho H, Gimeno A, Trovão F, Diniz A, Dias JS, Jiménez-Barbero J, Corzana F, Carvalho AL, Cabrita EJ, Marcelo F.  2021.  Structural insights into the molecular recognition mechanism of the cancer and pathogenic epitope, LacdiNAc by immune-related lectins, 2021. Chemistry – A European JournalChemistry – A European Journal. n/a(n/a): John Wiley & Sons, Ltd AbstractWebsite

Interactions of glycan-specific epitopes to human lectin receptors represent novel immune checkpoints for investigating cancer and infection diseases. By employing a multidisciplinary approach that combines isothermal titration calorimetry, NMR spectroscopy, molecular dynamics simulations, and X-ray crystallography, we disclosed the molecular determinants that govern the recognition of the tumour and pathogenic glycobiomarker LacdiNAc (GalNAc?1-4GlcNAc, LDN), including their comparison with the ubiquitous LacNAc epitope (Gal?1-4GlcNAc, LN), by two human immune-related lectins, galectin-3 (hGal-3) and the macrophage galactose C-type lectin (hMGL). A different mechanism of binding and interactions is observed for the hGal-3/LDN and hMGL/LDN complexes, which explains the remarkable difference in the binding specificity of LDN and LN by these two lectins. The new structural clues reported herein are fundamental for the chemical design of mimetics targeting hGal-3/hMGL recognition process.

Silva, PES, Chagas R, Fernandes SN, Pieranski P, Selinger RLB, Godinho MH.  2021.  Travelling colourful patterns in self-organized cellulose-based liquid crystalline structures, 2021. 2(1):79. AbstractWebsite

Cellulose-based systems are useful for many applications. However, the issue of self-organization under non-equilibrium conditions, which is ubiquitous in living matter, has scarcely been addressed in cellulose-based materials. Here, we show that quasi-2D preparations of a lyotropic cellulose-based cholesteric mesophase display travelling colourful patterns, which are generated by a chemical reaction-diffusion mechanism being simultaneous with the evaporation of solvents at the boundaries. These patterns involve spatial and temporal variation in the amplitude and sign of the helix´s pitch. We propose a simple model, based on a reaction-diffusion mechanism, which simulates the observed spatiotemporal colour behaviour.

Kumar, A, Cruz C, Figueirinhas JL, Sebastião PJ, Trindade AC, Fernandes SN, Godinho MH, Fossum JO.  2021.  Water Dynamics in Composite Aqueous Suspensions of Cellulose Nanocrystals and a Clay Mineral Studied through Magnetic Resonance Relaxometry, 2021. The Journal of Physical Chemistry BThe Journal of Physical Chemistry B. 125(46):12787-12796.: American Chemical Society AbstractWebsite
n/a
Rossi, M, Isufi B, Ramos AP.  2021.  Seismic behavior of slab-column connections with varying flexural reinforcement ratio, 14-16 June 2021. fib Symposium 2021. , Lisbon