Export 4179 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
One-Sun Lee, O-S, Petrenko VI, Siposova K, Musatov A, Park H, Lanceros-Méndez S.  2022.  How fullerenes inhibit the amyloid fibril formation of hen lysozyme. Journal of Industrial and Engineering Chemistry. 106:168-176.
Ramos, AP, Isufi B, Marreiros R, Marchão C.  2022.  Hybrid use of HPFRC in Slab-Column Connections under Cyclic Laterial Loading. fib Congress 2022, Oslo. , Oslocyclicoslo.pdf
Messias, S, Paz V, Cruz H, Rangel CM, Branco LC, Machado RAS.  2022.  Imidazolium and picoline-based electrolytes for electrochemical reduction of CO2 at high pressure. Energy Advances. 1(5):277-286.
Molcan, M, Safarik I, Prochazkova J, Kopcansky P, Timko M, Skumiel A.  2022.  The impact of alternating and rotating regimes on the heating characteristics of magnetic bacterial cellulose structure. Journal of Magnetism and Magnetic Materials. 563(170015)
Skumiel, A, Kocansky P, Timko M, Molcan M, Paulovicova K, Wojciechowski R.  2022.  The Influence of a Rotating Magnetic Field on the Thermal Effect in Magnetic Fluid. International Journal of Thermal Sciences. 171(107258)
Siposova, K, Petrenko VI, Garcarova I, Sedlakova D, Almasy L, Kyzyma OA, Kriechbaum M, Musatov A.  2022.  The intriguing dose-dependent effect of selected amphiphilic compounds on insulin amyloid aggregation: Focus on a cholesterol-based detergent. Chobimalt. 9(955282)
Pauleta, SR, Carepo M, Grazina R, Moura I, Moura JJG.  2022.  Iron-Sulfur centers: Functions of an ancient metal site. Comprehensive Inorganic Chemistry III From Biology to Nanotechnology, vol. 2. (Vincent Pecoraro and Zijian Guo, Ed.).:???., ???: ???
Ramou, E, Palma SICJ, Roque ACA.  2022.  Nanoscale Events on Cyanobiphenyl-Based Self-Assembled Droplets Triggered by Gas Analytes. ACS Applied Materials and Interfaces. 14(4):6261-6273.PDF
B.K., M, J.J.G. M.  2022.  Native Protein Template Assisted Synthesis of Non-Native Metal-Sulfur Clusters. BioChem. 2:182-197.
Panigrahi, S, Calmeiro T, Mendes MJ, Águas H, Fortunato E, Martins R.  2022.  Observation of Grain Boundary Passivation and Charge Distribution in Perovskite Films Improved with Anti-solvent Treatment. Journal of Physical Chemistry C. 126(45):19367–19375.
Haque, S, Alexandre M, Baretzky C, Rossi D, Rossi FD, Vicente AT, Brunetti F, Águas H, Ferreira RAS, Fortunato E, Maur MAD, Wurfel U, Martins R, Mendes MJ.  2022.  Photonic-Structured Perovskite Solar Cells: Detailed Optoelectronic Analysis. ACS Photonics. 9(7):2408–2421.
Ramos, A, Isufi B, Marreiros R, Bolesova M, Gajdsova K.  2022.  Rational Use of FPFRC in Slab-Connections Under Reversed Horizontal Cyclic Loading. Engineering Structures. Accepted for publication Abstract

Slab – column connections that are subjected to combined gravity and horizontal loading during an earthquake are prone to premature failure due to punching shear. Traditional solutions to avoid punching failure and to increase the displacement capacity of this type of connection include using stirrups and double-headed studs as shear reinforcement. The use of High-Performance Fiber Reinforced Concrete (HPFRC) in a small region of the slab around the column as a substitute for traditional solutions is investigated in this paper, because this material has the potential to reduce labor and material costs. To fulfill this objective, four slab specimens with a thickness of 150 mm were tested under combined gravity and reversed horizontal drifts. The results are discussed in detail. The experimental variables considered were the top flexural reinforcement ratio, the size of the HPFRC zone and the intensity of the gravity load. Previously published tests that serve as reference specimens are used to compare the results. The behavior of the specimens with HPFRC was substantially improved compared to the reference specimens in terms of drift capacity: from only 1.0% drift to above 5.5%, even though a very small quantity of HPFRC was used, extended up to only 1.5 times the effective depth of the slab from the face of the column. Specimens with HPFRC also behaved better when compared to specimens with High-Strength Concrete (HSC). Side effects of using HPFRC in the slab in the vicinity of the column include an increase of the unbalanced moment transfer capacity and lateral stiffness, as well as a reduction of the deflections of the slab.

Karamash, M, Stumpe M, Dengjel J, Salgueiro CA, Giese B, Fromm KM.  2022.  Reduction Kinetic of Water Soluble Metal Salts by Geobacter sulfurreducens: Fe2+/Hemes Stabilize and Regulate Electron Flux Rates. Frontiers in Microbiology. 13 AbstractWebsite

Geobacter sulfurreducens is a widely applied microorganism for the reduction of toxic metal salts, as an electron source for bioelectrochemical devices, and as a reagent for the synthesis of nanoparticles. In order to understand the influence of metal salts, and of electron transporting, multiheme c-cytochromes on the electron flux during respiration of G. sulfurreducens, the reduction kinetic of Fe3+, Co3+, V5+, Cr6+, and Mn7+ containing complexes were measured. Starting from the resting phase, each G. sulfurreducens cell produced an electron flux of 3.7 × 105 electrons per second during the respiration process. Reduction rates were within ± 30% the same for the 6 different metal salts, and reaction kinetics were of zero order. Decrease of c-cytochrome concentrations by downregulation and mutation demonstrated that c-cytochromes stabilized respiration rates by variation of their redox states. Increasing Fe2+/heme levels increased electron flux rates, and induced respiration flexibility. The kinetic effects parallel electrochemical results of G. sulfurreducens biofilms on electrodes, and might help to optimize bioelectrochemical devices.

M.J., N, G.N. V, A. S‐A, J.J.G. M, C. R, Sousa JP, C.M. C.  2022.  Screen‐Printed Electrodes Testing for Detection of Potential Stress Biomarkers in Sweat. Electrocatalysis. 13:299–305.
Isufi, B, Almeida A, Marreiros R, Ramos A, Lúcio V.  2022.  Slab – column connection punching and ductility improvement methods for seismic response of buildings with flat slabs. Structural Concrete. 23:1385–1398.Website
Sarnatskaya, V, Shlapa Y, Lykhova A, Brieieva O, Prokopenko I, Sidorenko A, Solopan S, Kolesnik D, Belous A, Nikolaev V.  2022.  Structure and Biological Activity of Particles Produced from Highly Activated Carbon Adsorbent. Heliyon. 8(3)
Maiti, BK, Maia LB, Moura JJG.  2022.  Sulfide and transition metals - A partnership for life. J Inorg Biochem. 227:111687.Website
https://aip.scitation.org/doi/full/10.1063/5.0073056.  2022.  Tailoring the synaptic properties of a-IGZO memristors for artificial deep neural networks. APL material. (10):1.
Relvas, JP.  2022.  Utilização Racional de Betões de Alta Resistência Reforçados com Fibras de Aço em Lajes Fungiformes. NOVA School of Science and Technology. (António Pinho Ramos, Brisid Isufi, Eds.)., Caparica
Gonçalves, AM, Sousa Â, Pedro AQ, Romão MJ, Queiroz JA, Gallardo E, Passarinha LA.  2022.  Advances in Membrane-Bound Catechol-O-Methyltransferase Stability Achieved Using a New Ionic Liquid-Based Storage Formulation. International Journal of Molecular Sciences. 23, Number 13 AbstractWebsite

Membrane-bound catechol-O-methyltransferase (MBCOMT), present in the brain and involved in the main pathway of the catechol neurotransmitter deactivation, is linked to several types of human dementia, which are relevant pharmacological targets for new potent and nontoxic inhibitors that have been developed, particularly for Parkinson’s disease treatment. However, the inexistence of an MBCOMT 3D-structure presents a blockage in new drugs’ design and clinical studies due to its instability. The enzyme has a clear tendency to lose its biological activity in a short period of time. To avoid the enzyme sequestering into a non-native state during the downstream processing, a multi-component buffer plays a major role, with the addition of additives such as cysteine, glycerol, and trehalose showing promising results towards minimizing hMBCOMT damage and enhancing its stability. In addition, ionic liquids, due to their virtually unlimited choices for cation/anion paring, are potential protein stabilizers for the process and storage buffers. Screening experiments were designed to evaluate the effect of distinct cation/anion ILs interaction in hMBCOMT enzymatic activity. The ionic liquids: choline glutamate [Ch][Glu], choline dihydrogen phosphate ([Ch][DHP]), choline chloride ([Ch]Cl), 1- dodecyl-3-methylimidazolium chloride ([C12mim]Cl), and 1-butyl-3-methylimidazolium chloride ([C4mim]Cl) were supplemented to hMBCOMT lysates in a concentration from 5 to 500 mM. A major potential stabilizing effect was obtained using [Ch][DHP] (10 and 50 mM). From the DoE 146% of hMBCOMT activity recovery was obtained with [Ch][DHP] optimal conditions (7.5 mM) at −80 °C during 32.4 h. These results are of crucial importance for further drug development once the enzyme can be stabilized for longer periods of time.

Pinto, F, Lourenço AF, Pedrosa JFS, Gonçalves L, Ventura C, Vital N, Bettencourt A, Fernandes SN, da Rosa RR, Godinho MH, Louro H, Ferreira PJT, Silva MJ.  2022.  Analysis of the In Vitro Toxicity of Nanocelluloses in Human Lung Cells as Compared to Multi-Walled Carbon Nanotubes. Nanomaterials. 12, Number 9 AbstractWebsite

Cellulose micro/nanomaterials (CMNM), comprising cellulose microfibrils (CMF), nanofibrils (CNF), and nanocrystals (CNC), are being recognized as promising bio-nanomaterials due to their natural and renewable source, attractive properties, and potential for applications with industrial and economical value. Thus, it is crucial to investigate their potential toxicity before starting their production at a larger scale. The present study aimed at evaluating the cell internalization and in vitro cytotoxicity and genotoxicity of CMNM as compared to two multi-walled carbon nanotubes (MWCNT), NM-401 and NM-402, in A549 cells. The exposure to all studied NM, with the exception of CNC, resulted in evident cellular uptake, as analyzed by transmission electron microscopy. However, none of the CMNM induced cytotoxic effects, in contrast to the cytotoxicity observed for the MWCNT. Furthermore, no genotoxicity was observed for CNF, CNC, and NM-402 (cytokinesis-block micronucleus assay), while CMF and NM-401 were able to significantly raise micronucleus frequency. Only NM-402 was able to induce ROS formation, although it did not induce micronuclei. Thus, it is unlikely that the observed CMF and NM-401 genotoxicity is mediated by oxidative DNA damage. More studies targeting other genotoxicity endpoints and cellular and molecular events are underway to allow for a more comprehensive safety assessment of these nanocelluloses.

Morais, {TS }, Fernandes {AR}, Baptista {PV}, Gambino D.  2022.  Editorial: Rational drug design of metal complexes for cancer therapy. Frontiers in Chemistry. 10: Frontiers Media Abstract
n/a
loading