Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
2022
Sarrato, J, Pinto AL, Cruz H, Jordao N, Malta G, Branco PS, Carlos Lima J, Branco LC.  2022.  Effect of Iodide-Based Organic Salts and Ionic Liquid Additives in Dye-Sensitized Solar Cell Performance, SEP. NANOMATERIALS. 12, Number 17 Abstract
n/a
Twilley, D, Thipe {VC }, Kishore N, Bloebaum P, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Selepe {MA }, Langhansova L, Katti K, Lall N.  2022.  Antiproliferative Activity of Buddleja saligna (Willd.) against Melanoma and In Vivo Modulation of Angiogenesis, nov. Pharmaceuticals. 15, Number 12: Molecular Diversity Preservation International (MDPI) Abstract

Melanoma cells secrete pro-angiogenic factors, which stimulates growth, proliferation and metastasis, and therefore are key therapeutic targets. Buddleja saligna (BS), and an isolated triterpenoid mixture (DT-BS-01) showed a fifty percent inhibitory concentration (IC50) of 33.80 ± 1.02 and 5.45 ± 0.19 µg/mL, respectively, against melanoma cells (UCT-MEL-1) with selectivity index (SI) values of 1.64 and 5.06 compared to keratinocytes (HaCat). Cyclooxygenase-2 (COX-2) inhibition was observed with IC50 values of 35.06 ± 2.96 (BS) and 26.40 ± 4.19 µg/mL (DT-BS-01). BS (30 µg/mL) significantly inhibited interleukin (IL)-6 (83.26 ± 17.60%) and IL-8 (100 ± 0.2%) production, whereas DT-BS-01 (5 µg/mL) showed 51.07 ± 2.83 (IL-6) and 0 ± 6.7% (IL-8) inhibition. Significant vascular endothelial growth factor (VEGF) inhibition, by 15.84 ± 4.54 and 12.21 ± 3.48%, respectively, was observed. In the ex ovo chick embryo yolk sac membrane assay (YSM), BS (15 µg/egg) significantly reduced new blood vessel formation, with 53.34 ± 11.64% newly formed vessels. Silver and palladium BS nanoparticles displayed noteworthy SI values. This is the first report on the significant anti-angiogenic activity of BS and DT-BS-01 and should be considered for preclinical trials as there are currently no US Food and Drug Administration (FDA) approved drugs to inhibit angiogenesis in melanoma.

Lenis-Rojas, {OA}, Roma-Rodrigues C, Carvalho B, Cabezas-Sainz P, {Fernández Vila} S, Sánchez L, Baptista {PV}, Fernandes {AR}, Royo B.  2022.  In Vitro and In Vivo Biological Activity of Ruthenium 1,10-Phenanthroline-5,6-dione Arene Complexes, nov. International Journal of Molecular Sciences. 23, Number 21: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Ruthenium(II) arene complexes exhibit promising chemotherapeutic properties. In this study, the effect of the counter anion in Ru(II) complexes was evaluated by analyzing the biological effect of two Ru(II) p-cymene derivatives with the 1,10-phenanthroline-5,6-dione ligand of general-formula [(η6-arene)Ru(L)Cl][X] X = CF3SO3 (JHOR10) and PF6 (JHOR11). The biological activity of JHOR10 and JHOR11 was examined in the ovarian carcinoma cell line A2780, colorectal carcinoma cell line HCT116, doxorubicin-resistant HCT116 (HCT116-Dox) and in normal human dermal fibroblasts. Both complexes JHOR10 and JHOR11 displayed an antiproliferative effect on A2780 and HCT116 cell lines, and low cytotoxicity in fibroblasts. Interestingly, JHOR11 also showed antiproliferative activity in the HCT116-Dox cancer cell line, while JHOR10 was inactive. Studies in A2780 cells showed that JHOR11 induced the production of reactive oxygen species (ROS) that trigger autophagy and cellular senescence, but no apoptosis induction. Further analysis showed that JHOR11 presented no tumorigenicity, with no effect in the cellular mobility, as evaluated by thye wound scratch assay, and no anti- or pro-angiogenic effect, as evaluated by the ex-ovo chorioallantoic membrane (CAM) assay. Importantly, JHOR11 presented no toxicity in chicken and zebrafish embryos and reduced in vivo the proliferation of HCT116 injected into zebrafish embryos. These results show that these are suitable complexes for clinical applications with improved tumor cell cytotoxicity and low toxicity, and that counter-anion alteration might be a viable clinical strategy for improving chemotherapy outcomes in multidrug-resistant (MDR) tumors.

Palma, SICJ, Frazao J, Alves R, Costa HMA, Alves C, Gamboa H, Silveira M, Roque ACA.  2022.  Learning to see VOCs with Liquid Crystal Droplets, may. 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). :1–4.: IEEE AbstractPDFWebsite

In hybrid gels with immobilized liquid crystal
(LC) droplets, fast and unique optical texture variations are
generated when distinct volatile organic compounds (VOCs)
interact with the LC and disturb its molecular order. The
optical texture variations can be observed under a polarized
optical microscope or transduced into a signal representing the
variations of light transmitted through the LC. We show how
hybrid gels can accurately identify 11 distinct VOCs by using
deep learning to analyze optical texture variations of individual
droplets (0.93 average F1-score) and by using machine learning
to analyze 1D optical signals from multiple droplets in hybrid
gels (0.88 average F1-score)

Esteves, C, Palma S, Costa H, Alves C, Santos G, Ramou E, Roque AC.  2022.  VOC Sensing in Humid and Dry Environments, may. 2022 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN). :1–3.: IEEE AbstractPDFWebsite

We report the development of gas-sensing multicomponent hybrid materials to be used under humidified and dried environments without the need of sample preconditioning or heavy signal processing. The easy tunability and the unique characteristics presented by the multicomponent hybrid materials suggests their use in nearterm applications in electronic nose systems able to operate in dry or humidified environments.

Coelho, {BJ}, Veigas B, Bettencourt L, Águas H, Fortunato E, Martins R, Baptista {PV}, Igreja R.  2022.  Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker, mar. Biosensors. 12, Number 4: MDPI - Multidisciplinary Digital Publishing Institute Abstract

We introduce a digital microfluidics (DMF) platform specifically designed to perform a loop-mediated isothermal amplification (LAMP) of DNA and applied it to a real-time amplification to monitor a cancer biomarker, c-Myc (associated to 40% of all human tumors), using fluorescence microscopy. We demonstrate the full manipulation of the sample and reagents on the DMF platform, resulting in the successful amplification of 90 pg of the target DNA (0.5 ng/µL) in less than one hour. Furthermore, we test the efficiency of an innovative mixing strategy in DMF by employing two mixing methodologies onto the DMF droplets—low frequency AC (alternating current) actuation as well as back-and-forth droplet motion—which allows for improved fluorescence readouts. Fluo-rophore bleaching effects are minimized through on-chip sample partitioning by DMF processes and sequential droplet irradiation. Finally, LAMP reactions require only 2 µL volume droplets, which represents a 10-fold volume reduction in comparison to benchtop LAMP.

Rodrigo, {AP }, Lopes {AC}, Pereira R, Anjo {SI }, Manadas B, Grosso {AR }, Baptista {PV}, Fernandes {AR}, Costa {PM }.  2022.  Endogenous Fluorescent Proteins in the Mucus of an Intertidal Polychaeta: Clues for Biotechnology, mar. Marine Drugs. 20, Number 4: MDPI - Multidisciplinary Digital Publishing Institute Abstract

The vast ocean holds many unexplored organisms with unique adaptive features that enable them to thrive in their environment. The secretion of fluorescent proteins is one of them, with reports on the presence of such compounds in marine annelids being scarce. The intertidal Eulalia sp. is an example. The worm secretes copious amounts of mucus, that when purified and concentrated extracts, yield strong fluorescence under UV light. Emission has two main maxima, at 400 nm and at 500 nm, with the latter responsible for the blue–greenish fluorescence. Combining proteomics and transcriptomics techniques, we identified ubiquitin, peroxiredoxin, and 14-3-3 protein as key elements in the mucus. Fluorescence was found to be mainly modulated by redox status and pH, being consistently upheld in extracts prepared in Tris-HCl buffer with reducing agent at pH 7 and excited at 330 nm. One of the proteins associated with the fluorescent signal was localized in secretory cells in the pharynx. The results indicate that the secretion of fluorescent proteinaceous complexes can be an important defense against UV for this dweller. Additionally, the internalization of fluorescent complexes by ovarian cancer cells and modulation of fluorescence of redox status bears important considerations for biotechnological application of mucus components as markers.

Alexandre, D, Teixeira B, Rico A, Valente S, Craveiro A, Baptista {PV}, Cruz C.  2022.  Molecular Beacon for Detection miRNA-21 as a Biomarker of Lung Cancer, mar. International Journal of Molecular Sciences. 23, Number 6: MDPI - Multidisciplinary Digital Publishing Institute Abstract

Lung cancer (LC) is the leading cause of cancer-related death worldwide. Although the diagnosis and treatment of non-small cell lung cancer (NSCLC), which accounts for approximately 80% of LC cases, have greatly improved in the past decade, there is still an urgent need to find more sensitive and specific screening methods. Recently, new molecular biomarkers are emerging as potential non-invasive diagnostic agents to screen NSCLC, including multiple microRNAs (miRNAs) that show an unusual expression profile. Moreover, peripheral blood mononuclear cells’ (PBMCs) miRNA profile could be linked with NSCLC and used for diagnosis. We developed a molecular beacon (MB)-based miRNA detection strategy for NSCLC. Following PBMCs isolation and screening of the expression profile of a panel of miRNA by RT-qPCR, we designed a MB targeting of up-regulated miR-21-5p. This MB 21-5p was characterized by FRET-melting, CD, NMR and native PAGE, allowing the optimization of an in-situ approach involving miR-21-5p detection in PBMCs via MB. Data show the developed MB approach potential for miR-21-5p detection in PBMCs from clinical samples towards NSCLC.

Isufi, B, Marchão C, Marreiros R, Ramos AP.  2022.  Experimental Investigation on the Behaviour of Hybrid HPFRC Flat Slabs, June 2022. fib Congress 2022, Oslo. , Oslomonotonicoslo.pdf
Moreira, IP, Esteves C, Palma SICJ, Ramou E, Carvalho ALM, Roque ACA.  2022.  Synergy between silk fibroin and ionic liquids for active gas-sensing materials, jun. Materials Today Bio. 15:100290.: Elsevier AbstractPDFWebsite

Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2–10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.

Ferreira‐silva, M, Faria‐silva C, Carvalheiro {MC }, Simões S, Marinho S}{H, Marcelino P, Campos {MC}, Metselaar {JM }, Fernandes E, Baptista {PV}, Fernandes {AR}, Corvo L}{M.  2022.  Quercetin Liposomal Nanoformulation for Ischemia and Reperfusion Injury Treatment, jan. Pharmaceutics. 14, Number 1: MDPI AG Abstract

Ischemia and reperfusion injury (IRI) is a common complication caused by inflammation and oxidative stress resulting from liver surgery. Current therapeutic strategies do not present the desirable efficacy, and severe side effects can occur. To overcome these drawbacks, new therapeutic alternatives are necessary. Drug delivery nanosystems have been explored due to their capacity to improve the therapeutic index of conventional drugs. Within nanocarriers, liposomes are one of the most successful, with several formulations currently in the market. As improved therapeutic outcomes have been demonstrated by using liposomes as drug carriers, this nanosystem was used to deliver quercetin, a flavonoid with anti-inflammatory and antioxidant properties, in hepatic IRI treatment. In the present work, a stable quercetin liposomal formulation was developed and characterized. Additionally, an in vitro model of ischemia and reperfusion was developed with a hypoxia chamber, where the anti-inflammatory potential of liposomal quercetin was evaluated, revealing the downregulation of pro-inflammatory markers. The anti-inflammatory effect of quercetin liposomes was also assessed in vivo in a rat model of hepatic IRI, in which a decrease in inflammation markers and enhanced recovery were observed. These results demonstrate that quercetin liposomes may provide a significant tool for addressing the current bottlenecks in hepatic IRI treatment.

Marques, AC.  2022.  Supercapacitors for a wearable All-FIBRE device, Feb28-Mar2. 3nd Condensed Matter Physics National Conference. , Faculdade de Ciências da Universidade de Lisboa (FCUL): Portuguese Society of Physics
Alves, R, Rodrigues J, Ramou E, Palma S, Roque A, Gamboa H.  2022.  Classification of Volatile Compounds with Morphological Analysis of e-nose Response, Feb. Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies - BIOSIGNALS. :31–39.: Scitepress AbstractPDF

Electronic noses (e-noses) mimic human olfaction, by identifying Volatile Organic Compounds (VOCs). This
work presents a novel approach that successfully classifies 11 known VOCs using the signals generated by
sensing gels in an in-house developed e-nose. The proposed signals’ analysis methodology is based on the
generated signals’ morphology for each VOC since different sensing gels produce signals with different shapes
when exposed to the same VOC. For this study, two different gel formulations were considered, and an average
f1-score of 84% and 71% was obtained, respectively. Moreover, a standard method in time series classification
was used to compare the performances. Even though this comparison reveals that the morphological approach
is not as good as the 1-nearest neighbour with euclidean distance, it shows the possibility of using descriptive
sentences with text mining techniques to perform VOC classification.

Oliveira, A, Ramou E, Teixeira G, Palma S, Roque A.  2022.  Incorporation of VOC-Selective Peptides in Gas Sensing Materials, feb. Proceedings of the 15th International Joint Conference on Biomedical Engineering Systems and Technologies. :25–34. AbstractPDFWebsite

Enhancing the selectivity of gas sensing materials towards specific volatile organic compounds (VOCs) is
challenging due to the chemical simplicity of VOCs as well as the difficulty in interfacing VOC selective
biological elements with electronic components used in the transduction process. We aimed to tune the
selectivity of gas sensing materials through the incorporation of VOC-selective peptides into gel-like gas
sensing materials. Specifically, a peptide (P1) known to discriminate single carbon deviations among benzene
and derivatives, along with two modified versions (P2 and P3), were integrated with gel compositions
containing gelatin, ionic liquid and without or with a liquid crystal component (ionogels and hybrid gels
respectively). These formulations change their electrical or optical properties upon VOC exposure, and were
tested as sensors in an in-house developed e-nose. Their ability to distinct and identify VOCs was evaluated
via a supervised machine learning classifier. Enhanced discrimination of benzene and hexane was detected
for the P1-based hybrid gel. Additionally, complementarity of the electrical and optical sensors was observed
considering that a combination of both their accuracy predictions yielded the best classification results for the
tested VOCs. This indicates that a combinatorial array in a dual-mode e-nose could provide optimal
performance and enhanced selectivity.

Alves-Barroco, C, Rivas-García L, Fernandes {AR}, Baptista {PV}.  2022.  Light Triggered Enhancement of Antibiotic Efficacy in Biofilm Elimination Mediated by Gold-Silver Alloy Nanoparticles, feb. Frontiers in Microbiology. 13:1–15.: Frontiers Research Foundation Abstract

Bacterial biofilm is a tri-dimensional complex community of cells at different metabolic stages involved in a matrix of self-produced extracellular polymeric substances. Biofilm formation is part of a defense mechanism that allows the bacteria to survive in hostile environments, such as increasing resistance or tolerance to antimicrobial agents, causing persistent infections hard to treat and impair disease eradication. One such example is bovine mastitis associated with Streptococcus dysgalactiae subsp. dysgalactiae (SDSD), whose worldwide health and economic impact is on the surge. As such, non-conventional nanobased approaches have been proposed as an alternative to tackle biofilm formation and to which pathogenic bacteria fail to adapt. Among these, metallic nanoparticles have gained significant attention, particularly gold and silver nanoparticles, due to their ease of synthesis and impact against microorganism growth. This study provides a proof-of-concept investigation into the use of gold-silver alloy nanoparticles (AuAgNPs) toward eradication of bacterial biofilms. Upon visible light irradiation of AuAgNPs there was considerable disturbance of the biofilms' matrix. The hindering of structural integrity of the biofilm matrix resulted in an increased permeability for entry of antibiotics, which then cause the eradication of biofilm and inhibit subsequent biofilm formation. Additionally, our results that AuAgNPs inhibited the formation of SDSD biofilms via distinct stress pathways that lead to the downregulation of two genes critical for biofilm production, namely, brpA-like encoding biofilm regulatory protein and fbpA fibronectin-binding protein A. This study provides useful information to assist the development of nanoparticle-based strategies for the active treatment of biofilm-related infections triggered by photoirradiation in the visible.

Lenis-Rojas, {OA}, Carvalho B, Cabral R, Silva M, Friães S, Roma-Rodrigues C, Meireles {MSH }, Gomes {CSB}, Fernández {JAA }, Vila {SF }, Rubiolo {JA }, Sanchez L, Baptista {PV}, Fernandes {AR}, Royo B.  2022.  Manganese(I) tricarbonyl complexes as potential anticancer agents, feb. JBIC Journal of Biological Inorganic Chemistry. 27:49–64., Number 1: Springer Abstract

The antiproliferative activity of [Mn(CO)3(N^N)Br] (N^N = phendione 1, bipy 3) and of the two newly synthesized Mn complexes [Mn(CO)3(acridine)(phendione)]OTf (2) and [Mn(CO)3(di-triazole)Br] (4) has been evaluated by MTS against three tumor cell lines A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), HCT116doxR (colorectal carcinoma resistant to doxorubicin), and in human dermal fibroblasts. The antiproliferative assay showed a dose-dependent effect higher in complex 1 and 2 with a selectivity toward ovarian carcinoma cell line 21 times higher than in human fibroblasts. Exposure of A2780 cells to IC50 concentrations of complex 1 and 2 led to an increase of reactive oxygen species that led to the activation of cell death mechanisms, namely via intrinsic apoptosis for 2 and autophagy and extrinsic apoptosis for 1. Both complexes do not target DNA or interfere with cell cycle progression but are able to potentiate cell migration and neovascularization (for 2) an indicative that their application might be directed for initial tumor stages to avoid tumor invasion and metastization and opening a new avenue for complex 2 application in regenerative medicine. Interestingly, both complexes do not show toxicity in both in vivo models (CAM and zebrafish). Graphical abstract: [Figure not available: see fulltext.]

Nuez-Martínez, M, Queralt-Martín M, Muñoz-Juan A, Aguilella {VM }, Laromaine A, Teixidor F, Viñas C, Pinto {CG }, Pinheiro T, Guerreiro {JF }, Mendes F, Roma-Rodrigues C, Baptista {PV}, Fernandes {AR}, Valic S, Marques F.  2022.  Boron clusters (ferrabisdicarbollides) shaping the future as radiosensitizers for multimodal (chemo/radio/PBFR) therapy of glioblastoma, dec. Journal of Materials Chemistry B. 10:9794–9815., Number 47: RSC - Royal Society of Chemistry Abstract

Glioblastoma multiforme (GBM) is the most common and fatal primary brain tumor, and is highly resistant to conventional radiotherapy and chemotherapy. Therefore, the development of multidrug resistance and tumor recurrence are frequent. Given the poor survival with the current treatments, new therapeutic strategies are urgently needed. Radiotherapy (RT) is a common cancer treatment modality for GBM. However, there is still a need to improve RT efficiency, while reducing the severe side effects. Radiosensitizers can enhance the killing effect on tumor cells with less side effects on healthy tissues. Herein, we present our pioneering study on the highly stable and amphiphilic metallacarboranes, ferrabis(dicarbollides) ([o-FESAN]− and [8,8′-I2-o-FESAN]−), as potential radiosensitizers for GBM radiotherapy. We propose radiation methodologies that utilize secondary radiation emissions from iodine and iron, using ferrabis(dicarbollides) as iodine/iron donors, aiming to achieve a greater therapeutic effect than that of a conventional radiotherapy. As a proof-of-concept, we show that using 2D and 3D models of U87 cells, the cellular viability and survival were reduced using this treatment approach. We also tested for the first time the proton boron fusion reaction (PBFR) with ferrabis(dicarbollides), taking advantage of their high boron (11B) content. The results from the cellular damage response obtained suggest that proton boron fusion radiation therapy, when combined with boron-rich compounds, is a promising modality to fight against resistant tumors. Although these results are encouraging, more developments are needed to further explore ferrabis(dicarbollides) as radiosensitizers towards a positive impact on the therapeutic strategies for GBM.

Barbosa, DJ, Capela JP, Ferreira LM, Branco PS, Fernandes E, de Bastos ML, Carvalho F.  2022.  Ecstasy metabolites and monoamine neurotransmitters upshift the Na+/K+ ATPase activity in mouse brain synaptosomes, DEC. ARCHIVES OF TOXICOLOGY. 96:3279-3290., Number 12 Abstract
n/a
Gago, D, Corvo MC, Chagas R, Ferreira LM, Coelhoso I.  2022.  Protein Adsorption Performance of a Novel Functionalized Cellulose-Based Polymer, DEC. POLYMERS. 14, Number 23 Abstract

Dicarboxymethyl cellulose (DCMC) was synthesized and tested for protein adsorption. The prepared polymer was characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), attenuated total reflection Fourier-transform infrared spectroscopy (ATR-FTIR) and solid state nuclear magnetic resonance (ssNMR) to confirm the functionalization of cellulose. This work shows that protein adsorption onto DCMC is charge dependent. The polymer adsorbs positively charged proteins, cytochrome C and lysozyme, with adsorption capacities of 851 and 571 mg g(-1), respectively. In both experiments, the adsorption process follows the Langmuir adsorption isotherm. The adsorption kinetics by DCMC is well described by the pseudo second-order model, and adsorption equilibrium was reached within 90 min. Moreover, DCMC was successfully reused for five consecutive adsorption-desorption cycles, without compromising the removal efficiency (98-99%).

Twilley, D, Meyer D, Langhansova L, Mcgaw {LJ }, Madikizela B, Roma-Rodrigues C, Baptista, {P. V}, Fernandes {AR }, Lall N.  2022.  Short Lecture 4 {"}Evaluation of antiproliferative and anti-angiogenic activity of an ethanolic extract of Helichrysum odoratissimum (L.) Sweet against skin cancer{"}, dec. Planta Medica. 88:1398–1398., Number 15: Georg Thieme Verlag Abstract
n/a
Esteves, C, Palma SICJ, Costa HMA, Alves C, Santos GMC, Ramou E, Carvalho AL, Alves V, Roque ACA.  2022.  Tackling Humidity with Designer Ionic Liquid-Based Gas Sensing Soft Materials, dec. Advanced Materials. 34:2107205., Number 8: John Wiley & Sons, Ltd AbstractPDFWebsite

Relative humidity is simultaneously a sensing target and a contaminant in gas and volatile organic compound (VOC) sensing systems, where strategies to control humidity interference are required. An unmet challenge is the creation of gas-sensitive materials where the response to humidity is controlled by the material itself. Here, humidity effects are controlled through the design of gelatin formulations in ionic liquids without and with liquid crystals as electrical and optical sensors, respectively. In this design, the anions [DCA]− and [Cl]− of room temperature ionic liquids from the 1-butyl-3-methylimidazolium family tailor the response to humidity and, subsequently, sensing of VOCs in dry and humid conditions. Due to the combined effect of the materials formulations and sensing mechanisms, changing the anion from [DCA]− to the much more hygroscopic [Cl]−, leads to stronger electrical responses and much weaker optical responses to humidity. Thus, either humidity sensors or humidity-tolerant VOC sensors that do not require sample preconditioning or signal processing to correct humidity impact are obtained. With the wide spread of 3D- and 4D-printing and intelligent devices, the monitoring and tuning of humidity in sustainable biobased materials offers excellent opportunities in e-nose sensing arrays and wearable devices compatible with operation at room conditions.

Pereira, HG, Sousa DG, Bradbury JS, Lourenço JM.  2022.  Automatic Generation of Contracts for Concurrent Java Programs, 8-9 Sep.. Atas do INForum 2022. ps22_-_contracts.pdf
Thales, P, Vale TM, Dias RJ, Lourenço JM.  2022.  Empowering a Relational Database with LSD: Lazy State Determination, 8-9 Sep.. Atas do INForum 2022. , Atas INForum 2022. Instituto Politécnico da Guardatv22_-_lsd-sql.pdf
Luna, F, Bradbury JS, Lourenço JM.  2022.  OSCAR - A Java Noise Injection Framework, 8-9 Sep.. Atas do INForum 2022. , Instituto Politécnico da Guardalbl22_-_oscar.pdf
Antão, J, Barreto J, Lourenço JM.  2022.  A Study of Latency-Aware Data-Placement in Heterogeneous (PMEM) Memory Systems, 8-9 Sep.. Atas do INForum 2022. , Instituto Politécnico da Guardaabl22_-_pmem.pdf