
Automatic Generation of Contracts for
Concurrent Java Programs⋆

Hugo Gamaliel Pereira

NOVA University Lisbon | FCT & NOVA LINCS, Portugal
hg.pereira@campus.fct.unl.pt

Abstract. It is not uncommon for larger concurrent programs to have
hundreds of atomic blocks and/or locks. As these programs become more
and more complex, they become increasingly more prone to contain con-
currency errors, as a programmer cannot easily take into account every
possible interleaving. One way to address this problem is to analyse a
concurrent program and generate a Contract for Concurrency, which
identify the sequences of statements that must be executed atomically
in a concurrent program. This method can be used either as documenta-
tion, for aiding development, or by an automatic tool to verify atomicity
violations. Gluon is a static analysis tool that verifies such contracts
for Java programs. Manually generating contracts for a large-scale code-
base is unfeasible, and Gluon lightens this burden by providing an auto-
mated but rudimentary contract generation functionality. In this paper
we propose a set of heuristics for automatically generating Contracts for
Concurrency, and evaluate their accuracy with Gluon. With this new
contract generation heuristics, we were able to fine-tune the contract
generation, considerably reducing the number of spurious (unnecessary)
clauses, which consequently reduced the analysis run time.

Keywords: Concurrency · Atomicity Violations · Automatic Contract
Generation · Static Analysis · Software Verification.

1 Introduction

In the early 2000’s there was a disruptfion in the programming paradigm due to
the stagnation of processor clock frequency and subsequent increase in processor
core count. To leverage from the added performance of multicore architectures,
the use of concurrency has become a fundamental requirement of software devel-
opment. Although capable of obtaining better performances, safe data manipula-
tion under concurrency rests on the programmer’s clairvoyance and proficiency
in properly protecting access to critical regions. Failing in this task will most
probably result in concurrency errors, such as atomicity violations. This prob-
lem becomes more noteworthy when we use services from third-party libraries,

⋆ Supported by Research Grants PTDC/CCI-COM/32456/2017 & LISBOA-01-0145-
FEDER-032456.

https://orcid.org/0000-0003-2046-5115


2 Hugo Gamaliel Pereira

where we possibly ignore the dependencies between services and cannot ensure
that the library’s atomicity constraints are properly respected.

The Contracts for Concurrency [5] address the problem of identifying the
dependencies between services in a software library or module, which in a con-
current setting, shall be executed atomically. Gluon [12] is a static analysis tool
that takes as inputs a Java program module and a Contract for Concurrency,
and outputs a verdict reporting if the program respects this same contract (i.e.,
if the invocations of the services identified as dependent in the contract are
properly executed atomically). Gluon leverages its static analysis capabilities to
generate rudimentary contracts from small to mid-sized Java legacy programs.

In this paper, we address the automatic generation of contracts for concur-
rent Java programs, by proposing and evaluating strategies and heuristics that
address the major shortcomings of the current Gluon’s contract generator: the
enormous number of contract clauses, the large number of false positives, and
the massive validation time.

Our evaluation using the same benchmark used initially by Gluon confirms
that our proposed heuristics produce a significantly lower number of clauses, pro-
ducing considerable improvements on the analysis runtime and with equivalent
or even better accuracy.

The upcoming Section presents the Contracts for Concurrency and the pro-
cess behind Gluon analysis. §3 and §4 explores the proposed generation method-
ology and design. §5 contains the evaluation of the proposed heuristics using
Gluon. Lastly, §6 presents the related work, ending with the conclusions in §7.

2 Contracts for Concurrency

A Contract for Concurrency [5] is a protocol expressed as a set of clauses that,
for a given software module (program or library), identifies sequences of method
calls that must be executed atomically (within a critical region). Each clause
identifies one particular sequence (or more than one if using the OR operator)
of methods that must be atomically executed, and is expressed as a star-free
regular expression over the set of method names ΣM of the software module.
In other words, a contract is a set R of clauses, where each clause ρ ∈ R is a
star-free regular expression over the set of all public method names (i.e., API)
of a software module m ∈ ΣM.

A contract violation occurs if any of the sequences represented by the contract
clauses (ρ ∈ R) is interleaved with the execution of an other method from ΣM
over the same object.

2.1 Example of a Contract

In order to illustrate the whereabouts of a Contract for Concurrency, consider
the following relations between some well-known methods provided by the Java
standard library (java.util.List):



Automatic Generation of Contracts for Concurrent Java Programs 3

Example 1 Basic Contract for Concurrency.

1 add (contains | indexOf);

2 size get;

In Example 1, the first clause (line 1) states that, after a successful add
operation, the item must be in the list. The trueness of this condition is trivial
for a sequential program, but may not hold in a concurrent setting, where another
thread may remove the newly added item just before its presence is verified. To
disallow such behaviours, the call of the list methods add followed by contains

must be executed atomically. The same applies to the call sequence add followed
by indexOf, which must return a valid index for the inserted element and, thus,
must be executed atomically as well.

The second clause (line 2) states that a call to a List’s size method followed
by get should successfully return the last element in the list. This may not occur
in a concurrent setting if, in between those two calls, another thread removes
the given element or appends yet another element to the list. Thus, the second
clause in the contract declares that such method sequences must be executed
atomically.

2.2 Verification of Contracts

The behaviour of a program can be seen as the join of the possible individual
behaviours of all the threads the program may launch. To extract the usage of
a module by a thread, Gluon starts by extracting its control flow graph (CFG)
from the source code. From the CFG of a thread t, a context-free grammar Gt is
built such that, if there is an execution path of t that runs a sequence of method
calls, then that sequence is a word of the language represented by Gt.

Definition 1 (Thread Grammar). A thread grammar Gt, which includes
all the sequences of method calls executed by a thread t is defined by Gt =
(N,ΣM, P, S) where:

– N, is the set of non-terminal symbols.
– ΣM, is the set of terminal symbols, where N ∩ΣM = NULL.
– P, is the set of productions, such that P = N → (N ∪ T ).
– S, is the starting symbol.

Intuitively, the grammar Gt represents the control flow of the thread t, ig-
noring everything not related with the module’s usage.

Algorithm 1 presents the pseudocode of the approach for verifying a Contract
for Concurrency [5].

The algorithm iterates over the program’s threads (line 1). For each thread t,
it first generates a grammar Gt (as described above) that captures the CFG of t
(line 2). From Gt, a grammar G′

t describing all sub-words of the words generated



4 Hugo Gamaliel Pereira

Algorithm 1 Contract verification algorithm.

Require: P: client’s program; C: module contract (set of allowed sequences).
1: for t ∈ threads(P ) do
2: Gt ← make grammar(t)
3: G′

t ← subword grammar(Gt)
4: for w ∈ C do
5: T ← parse(G′

t, w)
6: for τ ∈ T do
7: N ← lowest common ancestor(τ, w)
8: if ¬run atomically(N) then
9: return VIOLATION
10: return OK

by Gt is obtained (line 3). The sub-words correspond to parts of executions of
the original program. The sub-words must be considered, since a contract clause
typically corresponds to a part of a run only. For example, if a thread executes a
sequence m.a(); m.b(); m.c();, G′

t allows recognizing a contract with a clause
containing only ρ = bc.

The algorithm subsequently iterates over contract clauses ρ ∈ R (line 4) and
handles them one-by-one. To see whether a thread t may generate a contract
clause ρ, representing a call sequence, it is enough to parse ρ in G′

t (line 5). This
will create a parsing tree for each location from which the thread can execute
the given sequence of calls. Function parse() returns the set T of these parsing
trees.

Each of the parsing trees in T is then inspected to determine the atomicity of
the given call sequence (line 6). In particular, the parsing trees contain informa-
tion about the location of each of the calls of contract ρ in the program. Thus,
by moving upwards in the parsing tree, we can find the node that represents
the method under which the call sequence defined by the contract is performed.
This node is the lowest common ancestor of the call sequence of ρ in the parsing
tree (line 7).

The algorithm then checks whether the lowest common ancestor is always
executed atomically (line 8) to make sure that the whole sequence of calls is
executed under the same atomic context. Since it is the lowest common ancestor,
we are sure to require the minimal synchronization from the program. A parsing
tree contains information about the program locations where a contract violation
may occur, and so we provide the programmer with detailed instructions on
where this violation may occur and how to fix it.

2.3 Contracts with Parameters

Contract clauses as described in §2.1 can easily produce false positives (incorrect
contract violations). Thus, contract clauses’ restrictiveness may be increased,
by limiting their scope to simultaneous manipulations of the same object. In
essence, symbols in contract clauses may restrain the clause scope by including



Automatic Generation of Contracts for Concurrent Java Programs 5

(anonymous) references to the data objects being used. Consequently, Example 1
can be rewritten as:

Example 2 Contract for concurrency with parameters.

1 add(X) (contains(X) | indexOf(X));

2 X=size get(X);

From this section, we conclude that it is a good practice to adopt these types
of contracts whenever possible, capturing in detail the relationships between calls
that can be problematic and, therefore, excluding sequences of operations that
do not constitute true atomicity violations.

3 Work Proposal

Gluon [12] is static analysis tool, which can verify if a Java program respects
a given Contract for Concurrency that regulate the sequences of method calls
needed to be executed atomically. Gluon is also capable of generating basic
contracts by analysing the Java source code and applying simple heuristics. The
success of the automatic generation of Contracts for Concurrency depends on
the quality of the process of extracting and identifying method dependencies
from the program under analysis.

Currently, Gluon analyses the method dependencies by examining the critical
regions protected by atomic blocks, creating a contract clause when a sequence
of methods is executed atomically more than once. Thus, a contract generated
by Gluon is a set Rg of clauses, where each clause ρg ∈ Rg is a star-free regular
expression over the set of all public method names (i.e., API) of a software
module m ∈ ΣM, such that every word w matching the clause (w ∈ L(ρ)) occurs
at least twice inside atomic regions in the program. With its current contract
generation heuristic, Gluon can handle and generate contracts for small toy
examples. However, when used in large-scale programs, Gluon ultimately fails,
being either unable to parse the project or producing unusable contracts with too
many clauses, leading to very long runs and too many false positive violations.
Thus, contracts for large-scale programs must be subject to human proofreading
and filtering.

We propose a set of more reliable heuristics for automatic generation of Con-
tracts for Concurrency, which can handle complex and fairly voluminous Java
programs. Such heuristics will be implemented and evaluated in Gluon.

4 Approach & Design

The main idea behind the newly proposed heuristics arises from the insight that
most critical regions are predictably protected by the existence of atomic blocks.



6 Hugo Gamaliel Pereira

However, in larger-scale programs, some unduly protected regions may exist,
resulting in atomic violations. As such, we consider that the greater the percent-
age of times a given sequence is already executed atomically, the more likely it
is to be representative of a real dependency. Thus, the threshold adopted must
reflect a balance between a high percentage of atomic executions and a suffi-
ciently large interval for detecting certain improperly protected executions. If
such threshold is too low, the analysis will tend to report too many false posi-
tives. If, on the other hand, the threshold is too high, cases of atomic violations
are no longer displayed, and only the well-protected operations are shown. Con-
sequently, Gluon loses its primary purpose, which is the verification/detection
of atomic violations.

The implementation of this approach was made possible by relying on the
Soot [13] framework, which directly analyses the Java bytecode of programs, thus
allowing access to the AST (Abstract Syntax Tree) and consequently making
it possible to infer certain conclusions of the program under testing. So, by
manipulating this framework, we can understand which methods are executed
atomically and, from there, obtain the information necessary to perform the
appropriate checks for the creation of contracts. Furthermore, it is relevant to
mention that our option for the use of Soot [13] was biased by its previous usage
on Gluon, and it was reasonable to continue using the same framework, even
though others, such as ASM [2], could have been adopted.

4.1 Minimum Number of Atomic Executions Heuristic

The approach for the generation of contracts, adopted by Gluon, is based on the
search of atomic blocks and on the extraction of the methods placed inside those
blocks into a contract clause associated with the program under consideration.

For a better understanding of this technique, please consider the Example be-
low, alluding to some operations executed atomically, followed by the respective
contract.

Example 3 Method containing an atomic block with several methods invoked

1 void f(Object o) throws Exception {

2 ...

3 synchronized(this) {

4 int index = list.indexOf(o);

5 list.remove(index);

6 Thread.sleep(100);

7 }

8 ...

9 }



Automatic Generation of Contracts for Concurrent Java Programs 7

Example 4 Clause generated for the Example 3

1 indexOf remove sleep;

In large-scale programs with many atomic invocations, there are generated
clauses for all methods invoked in atomic blocks, which results in an endless
number of clauses and an excessive analysis time. So, a given clause might only
be associated with one atomic execution, which in the context of this paper, we
considered spurious and irrelevant, compromising the final analysis time of the
program.

In order to address this problem, we may require a sequence to be executed
atomically at least n times before giving rise to a clause, which results in the
heuristic previously supported by Gluon. In cases where the number of atomic
executions is greater or equal than two (n ≥ 2), we are sure that there is associ-
ated a repetition pattern, so these executions are probably correlated. Thus, we
assume that those methods must always be executed atomically, and a clause is
created.

Finally, we expect that the greater the number of atomic executions (n)
required, the smaller the number of clauses produced and, consequently, the
shorter the analysis time. However, false negatives become more likely to occur
when we ignore sequences that, even though not fulfilling the requirements, were
somewhere atomically protected. Furthermore, this technique is not devoid of
false positives, as some clauses may not be representative of real dependencies.
Also, we only refer to existing dependencies by their name, ignoring whether or
not the same object is being manipulated during the execution, which may not
correspond to a valid transgression.

4.2 Threshold Heuristic Applied to the Whole Program

The concept of threshold, applied under the automatic generation of contracts,
is defined as the need for every word w, matching the clause (w ∈ L(ρ)), to be
executed atomically a certain percentage of times in the program source code.
As previously mentioned, the higher this ratio, the more likely for w to be a real
dependency. Thus, limiting the generation of contracts to those frequently pro-
tected throughout the program seems to be a worthy contribution to obtaining
clauses more representative of the program’s correlations.

The clauses resulting from this new heuristic, Rb, are expected to be a sub-
set of the ones presented in the section above and previously outputted by
Gluon [12], Ra, when requiring the same number of minimal executions, Rb ⊂ Ra.

4.3 Threshold Heuristic Applied to Program Modules

In some contexts, the previous heuristic can be too restrictive, compromising the
capture of some dependencies. These situations are most likely when the pro-
gram under testing is developed by various programmers and consists of multiple



8 Hugo Gamaliel Pereira

third-party modules. In this case, several modules tend to have their dependent
methods correctly protected, while others, due to the lack of knowledge of the
dependencies, may have them improperly guarded or even unguarded.

As such, we propose a new heuristic based in the percentage of times an
exact sequence is atomically executed inside a module. Thus, if a particular
sequence of methods is recurrently protected in one program module, then it
should probably continue to be executed atomically in the rest of the program,
and so a contract clause is produced.

Furthermore, using this heuristic, without even recurring to a subsequent
human analysis, can be a very useful attempt to understand the program depen-
dencies, while saving plenty of time in large programs, since a massive amount
of manual scrutiny could be replaced by this quick and simple procedure.

4.4 Generation of Parameterized Contracts

Now that the generation of fewer clauses has been addressed, it is necessary
to solve the existing problem of the analysis resulting in many false positives,
which was one of the principal issues when analysing real-world concurrent pro-
grams [12], were dozens of violations encountered did not correspond to valid
transgressions.

Thence, it is necessary to remember the concept of parameterized contracts,
exposed in §2.3. Relying on these restrictive representations of dependencies
ensures that only the same object is being manipulated. Therefore, the resulting
analysis of the contracts is not compromised, producing the correct verdicts.

The work carried out this principle as a premise and sought to produce such
restrictive contracts with return values and parameters.

4.5 Partial Verification of Contracts

So far, the heuristics presented are based on the common principle that de-
pendencies are extracted from atomic blocks. Furthermore, the work developed
directly depends on the analysis and comparison of all the methods invoked
within these blocks. However, relying on a complete match may not be feasi-
ble for contract generation, as for convenience, the programmer(s) may place
more methods within these critical regions than those absolutely necessary, thus
distorting the required sequence and causing false negatives.

This way, some real dependencies may not be generated and consequently not
be considered in the program’s analysis. To address this problem, we proposed
a strategy that includes generating contract clauses with partial expressions,
i.e., extracting the operations invoked in a given atomic block and combining
them into smaller clauses, each covering only two methods while maintaining
their order of execution. In essence, we expect this contribution to be beneficial
in situations where the program presents large critical regions with multiple
operations invoked.

For a better understanding of this new technique, please consider the Exam-
ple 3, alluding to some operations executed atomically. The previously existing



Automatic Generation of Contracts for Concurrent Java Programs 9

technique required a match of the clause presented in Example 4, which now
may be parameterized and expressed as the Example below:

Example 5 Parameterized clause generated by a complete match

1 X=indexOf(_) remove(X) sleep;

Although, when applying this new technique the clauses produced would be
the following ones:

Example 6 Clauses generated by a partial match

1 X=indexOf(_) (remove(X) | sleep);

2 remove sleep;

With this approach, we can match with a potential critical region that has
protected the method’s indexOf followed by remove. Furthermore, it is still
relevant to mention that by transitivity, the clause presented in Example 5 would
continue to be obtained from the clauses of Example 6.

4.6 Default Contract

In order to further improve the accuracy of Gluon, contracts were generated
and analysed for a wide variety of programs, and we observed that there is a set
of clauses from well-known libraries whose use extends to almost all large-scale
software. So, we decided to create a default contract containing parameterized
clauses, allowing the user to quickly check whether these procedures are being
complied with or not.

In short, we believe that, by providing various forms of contract generation,
it is possible to build a more robust tool capable of being used under different
heuristics and adjusted to the distinct designs of the programs under testing.
Lastly, Gluon aims to produce fewer contracts, although more representative of
the existing dependencies.

5 Evaluation

In this section, we expose and analyse some experimental results of automatic
contract creation, in the following programs: Cassandra 2.0.9, Derby 10.10.2.0,
Lucene 4.6.1, OpenJMS 0.7.6, and Tomcat 6.0.41. These same programs and



10 Hugo Gamaliel Pereira

versions have already been studied in [12], so we can more easily compare and
contrast our results with these previous ones.

As a way of questioning the assumptions used in this work, with respect to
the need to create fewer clauses and reduce the number of false positives, we used
different heuristics to obtain the set of dependencies that each of them would
find, requiring the sequence to be executed atomically at least once.

272

119
94

0
50

100
150
200
250
300

Atomic
Executions

Module
Threshold

Program
Threshold

Fig. 1: Number of clauses generated for Cassandra 2.0.9 with different heuris-
tics.

To better understand the subsequent results, let us discuss Figure 1, where
Without Threshold refers to the previous heuristic used by Gluon, only based
on the number of times a sequence is executed atomically, as described in §4.1;
Module Threshold refers to the generation of clauses based on the percentage of
times (75%) the arrangement of methods is executed atomically within a given
module, as explained in §4.3; and Program Threshold references to dependencies
that run atomically across the entire project more than 75% of the time, as
discussed in §4.2.

Besides getting a substantial decrease in the number of dependencies found
when using the new heuristics, we can see that the number of correlations to
be analysed, continues to be high, which would still take a considerable time
to examine. Thus, we evaluated the impact of the minimum number of atomic
executions on the number of clauses created, by testing the amount of clauses
generated using different heuristics, presenting the results in Figure 2. It seems
that assuming as an axiom that a given dependency is performed at least twice
atomically can be convenient, reducing the number of clauses generated by more
than 80%. As such, we will assume that, if the same sequence of calls is executed
atomically in two different program locations, it may indicate that these methods
are related and should always be executed atomically, and the corresponding
contract cause will be generated.

The next step was to assess the efficacy of our new heuristics, which is de-
picted in Figure 3. These results are supported by contracts automatically gener-
ated by the Gluon tool, which considered the code from the Java Library itself,
so it also includes the analysis of the critical regions within this library.

Our new heuristics should not compromise the quality of the analysis un-
dertaken by the Gluon tool. Since the Lucene program had no reported bugs,
reducing the number of clauses to be analysed would be beneficial, which was



Automatic Generation of Contracts for Concurrent Java Programs 11

119

21 14

272

46
23

94

13 70

50

100

150

200

250

300

1 2 3

Program Threshold

Number Atomic Blocks

Module Threshold

Fig. 2: Impact of the minimum number of atomic executions throughout the
different heuristics used for Cassandra 2.0.9.

46

21
13

0
10
20
30
40
50
60
70
80

Atomic
Executions

Module
Threshold

Program
Threshold

(a) Cassandra 2.0.9

70

24
15

0
10
20
30
40
50
60
70
80

Atomic
Executions

Module
Threshold

Program
Threshold

(b) Derby 10.10.2.0

54

24
17

0
10
20
30
40
50
60
70
80

Atomic
Executions

Module
Threshold

Program
Threshold

(c) Lucene 4.6.1

47

20
11

0
10
20
30
40
50
60
70
80

Atomic
Executions

Module
Threshold

Program
Threshold

(d) OpenJMS 0.7.6

45

21
11

0
10
20
30
40
50
60
70
80

Atomic
Executions

Module
Threshold

Program
Threshold

(e) Tomcat 6.0.41

Fig. 3: Relation of the number of clauses throughout the different programs.

verified. For Cassandra, all violations would continue to be reported regardless
of the heuristic used. In Derby, although the Module Threshold heuristic (§4.3)
is able to capture the clauses representing the violations presented, using the
missing heuristic, Program threshold showcased in the §4.2, this does not check.
Nevertheless, in OpenJMS and Tomcat, only a few of the bugs could be detected,
despite the heuristic used. However, it is necessary to mention that some of the
clauses used to test this program in 2014, came from a manual generation. As
such, a portion of the dependencies found would not be captured by the existing
heuristics.

When skipping the analysis of the Java Library, we verified that finding
the representative clauses of the bugs became far more complicated, generating
less than half a dozen clauses for the new heuristics in each of the programs
considered. Therefore, it was only possible to obtain similar results in Lucene

(due to the absence of bugs) and OpenJMS. These results may indicate that the
source code of the programs under analysis has large atomic blocks with several



12 Hugo Gamaliel Pereira

invocations. So, total correspondence between these regions is difficult to occur,
which contrasts with the code of the Java Library, which may have atomic blocks
more compacted, allowing these to be determined with ease.

Given these results, it was necessary to use another way of capturing depen-
dencies mentioned in §4.5. This new strategy subdivides the invocations inside
an atomic block into smaller arrangements, thus requiring a less restrictive corre-
spondence. Through this technique and not considering the Java Library classes,
it was found that some clauses, lost in the results presented above, were identi-
fied again, particularly in the Derby program, where the reported bug would be
found using any of the heuristics.

Combining this new technique with the analysis considering the code of the
Java Library, the results obtained were similar to those presented before, except
for the OpenJMS program, where it was possible to capture the missing clause.
However, it is necessary to mention that the number of clauses generated has
increased a lot (most of the time to the hundreds), making the subsequent anal-
ysis quite time-consuming and certainly unfeasible from the users’ perspective.
Thus, it is pertinent to mention that a quick analysis using the default contract
can be a convenient alternative to test some of the most common dependencies
discovered in concurrent Java programs. Therefore, the abundance of the atomic
violations, which led to the bugs reported in the programs mentioned, would be
captured using this alternative.

Nevertheless, we believe that the real benefit of this work stems from the
combination of the techniques introduced, which now provide the user greater
flexibility in the choice of various options that might make the most sense in the
program under study. Besides, it is also particularly relevant to mention that the
adopted threshold can be changed, thus directly affecting the number of clauses
in the contract and the atomic violations Gluon will detect.

Along those lines, for the evaluation of the outcomes, a threshold of 75%
was used after having carried out a variety of specific tests for the scrutiny of
these programs, meaning that it may not always be the best value to adopt in
other programs under analysis. For the OpenJMS program, it was verified when
incrementing the threshold by 10% that at 85%, an atomic violation was no
longer detected, thus compromising the accuracy of the tool. Similarly, for the
Cassandra program, as well as for Derby and Tomcat, when adopting a threshold
of 75%, most of the clauses corresponding to the detected bugs would appear.
Thus, it was considered that the best value to adopt in this evaluation would be
75%. Although, it is also relevant to mention that these experiments also took
into account the code and, consequently, the dependencies of the Java Library.

Now that the generation of fewer clauses resulting from the creation of new
heuristics has been addressed, it is necessary to demonstrate the reduction in
the analysis time of the clauses produced by the different techniques.

Figure 4 presents the time required for the analysis of the clauses generated
by the different heuristics, for Cassandra 2.0.9 (corresponding to Figure 3a).
As expected, there was a significant improvement in the time required to check
for atomic violations of the program under analysis, given its clauses. Thus,



Automatic Generation of Contracts for Concurrent Java Programs 13

15.8

7.8

3.4
2.3

0

2

4

6

8

10

12

14

16

18

h
ou

rs
Without
Threshold

Module
Threshold

Program
Threshold

Default
Contract

Fig. 4: Relation between the different heuristics and the time analysis, in hours,
for Cassandra 2.0.9.

when comparing the outcome with the previously existing heuristic (§4.1), an
improvement of approximately 50% is obtained while using theModule Threshold
heuristic presented in §4.3. The improvement becomes even more significant
whenever compared with the remaining heuristic, Program Threshold illustrated
in §4.2, with a reduction of almost 80% of the time. Furthermore, when using the
default contract presented in §4.6, it is possible to obtain a notable improvement,
close to 85%, in the time required for the analysis of dependencies. As such, the
value represented by this technique, as a quick and broad search for atomic
violations, is reinforced.

Lastly, now that a reduction in analysis time has been addressed, it was nec-
essary to improve another main obstacle, the quality of the results obtained,
namely the number of false positives. As such, the clauses generated are now pa-
rameterized whenever possible, which notably contributes to reducing the num-
ber of false positives.

6 Related Work

The approach used in this work was based on the methodology of programming
by contracts introduced by Bertrand Meyer [10] in 1992, based on defensive
programming where the client and the provider are responsible for guaranteeing
the consistency of the contract by defining the description of the class interface
and its routines, through a set of pre and post-conditions.

R. Kramer provided Java support for these contracts, which until then were
only available in the Eiffel language, and presented the iContract [7], which is a
preprocessor capable of verifying if, in a given method, the constraints presented
by the tags @pre, @post, and @invariant are respected. Later, other proposals
of extensions to the DbC methodology appeared, including specification lan-
guages for modules in Java [8] describing its protocol through the use of Java
annotations, and precompilers that dynamically test program annotations[4, 1].

Cheon et al. [3] propose an approach separating protocol from functional
assertions and introducing a new specification clause referring to the order of



14 Hugo Gamaliel Pereira

dependencies throughout method calls, using regular expression notations, al-
lowing to specify the protocol that a given Java object should have. In order
to support their work, they extended the JML [8] compiler to recognize the
new clause at runtime, presenting a dynamic analysis tool. Later, this work was
extended by Hurlin [6] to support concurrency scenarios using static analysis
based on a proof theorem that tends to be quite limited due to the inefficiency
of automatic program generation from contracts to prove their correctness.

Many works can be found on atomic violations, wherein Peng Liu et al. de-
veloped a tool (ICFinder [9]) that is similar to Gluon, relying on static analysis
to infer incorrect module calls. Subsequently, the tool filters them using dynamic
analysis, due to the generation of many false positives. However, it is notewor-
thy to mention, that the bugs reported by Gluon in the programs cited in the
previous section, were not able to be detected by ICFinder.

Finally, given the lack of popularity of this type of methodology in the devel-
opment of concurrent programs, we can’t find much work done in the automatic
generation of contracts. Furthermore, given the contract specification adopted
in this tool, resulting only in a sequence of methods that need to be atomically
executed, it becomes difficult to compare the work done with other software.
As such, we hope this work will contribute, even if at a small scale, to the dy-
namization of this methodology, which has already been proven to yield good
results.

7 Conclusion

In this paper, we explored the topic of automatic contract generation for con-
current programs in Java, improving the previous heuristics in both efficiency
and efficacy, and ultimately making the Gluon tool more complete and reliable.
Consequently, Gluon can now generate and analyse parameterized contracts and
produce a verdict on whether or not atomic violations have occurred, promoting
the production of robust and reliable software.

The methodology, based on the usage of different heuristics and the use
of parameters representing the distinguishable objects on the execution flow,
demonstrated, through the results obtained, that it is possible to generate fewer
clauses without compromising the identification of dependencies and the accu-
racy of the tool.

This work offers room for further improvement, in the form of presenting
even fewer clauses using parameterized contracts to detect the number of times
a given sequence is atomically executed. From the point of view of analysing
the occurrence of atomic violations, it is only essential to consider the case in
which the same object is manipulated. Although, this situation is controlled a
posteriori due to the generation of parameterized contracts and by a subsequent
analysis that will only take into consideration the manipulation of the same
object. Nonetheless, it could be an effective way to further restrict the number
of clauses presented and make the creation of clauses more representative, as only



Automatic Generation of Contracts for Concurrent Java Programs 15

those are truly capable of producing real atomic violations since they manipulate
the same object and, by definition, need to be atomically protected.

In addition, when analysing large programs, Gluon cannot scrutinize the
whole program scope due to space state explosion, which results in an exponential
increase of the corresponding time and resources used when exploring the parsing
trees of the class combinations. As such, it would be interesting to modify the
contracts, so it becomes possible to allude to the class where the method comes
from, allowing us to refer to dependencies of multiple classes, despite limiting
the analysis to the combination of the modules mentioned in the contracts.

Finally, it is rather important to mention that the large quantity of clauses
obtained when using the technique exposed in §4.5, is due to the fact that all
possible combinations for the operations invoked on atomic blocks are being
taken into account. However, this factor could be optimized and simply create
clauses for methods that handle the same object. This way, it would be possible
to obtain a significant reduction in dependencies produced and consequently on
the analysis time, leaving the capture of real dependencies uncompromised.

Acknowledgments

This report is an extended version of the paper ”Automatic Generation of Con-
tracts for Concurrent Java Programs” [11] to be presented in INForum 2022.
I would like to express my gratitude to Diogo Sousa, the initial developer of
Gluon, and Filipe de Luna, who is currently working on his MSc dissertation,
for their multiple suggestions, help, and permanent availability, which undoubt-
edly impacted the final outcome of this project. I also want to thank my advisers’
Profs. João Lourenço and Jeremy Bradbury (Ontario Tech University, Canada)
for their incredible support and mentoring throughout this work. From the first
day, I was welcomed with open arms and provided with the best conditions so
I could develop my skills and knowledge in this subject. Moreover, I would like
to express my appreciation to Prof. João Lourenço for the immediate availabil-
ity and opportunity to attend his MSc classes in Concurrency and Parallelism
course, particularly relevant to the development of this work, where its influence
was undoubtedly notable. I am very grateful to them for providing me with my
first contact with research, which I will always bear in mind with great fondness.

References

1. Bartetzko, D., Fischer, C., Möller, M., and Wehrheim, H.: Jass — Java with Asser-
tions1 1This work was partially funded by the German Research Council (DFG)
under grant OL 98/3-1. Electronic Notes in Theoretical Computer Science 55(2),
103–117 (2001). doi: 10.1016/s1571-0661(04)00247-6

2. Bruneton, E., Lenglet, R., and Coupaye, T.: ASM: a code manipulation tool to
implement adaptable systems. Adaptable and extensible component systems 30(19)
(2002)

https://doi.org/10.1016/s1571-0661(04)00247-6


16 Hugo Gamaliel Pereira

3. Cheon, Y., and Perumandla, A.: Specifying and checking method call sequences
of Java programs. Software Quality Journal 15(1), 7–25 (2007). doi: 10.1007/
s11219-006-9001-4

4. Corbett, J.C., Dwyer, M.B., Hatcliff, J., and Robby: A Language Framework for
Expressing Checkable Properties of Dynamic Software. In: SPIN Model Checking
and Software Verification, pp. 205–223. Springer Berlin Heidelberg (2000). doi:
10.1007/10722468_13

5. Dias, R.J., Ferreira, C., Fiedor, J., Lourenço, J.M., Smrcka, A., Sousa, D.G., and
Vojnar, T.: Verifying Concurrent Programs Using Contracts. In: 2017 IEEE In-
ternational Conference on Software Testing, Verification and Validation (ICST),
pp. 196–206 (2017). doi: 10.1109/ICST.2017.25

6. Hurlin, C.: Specifying and checking protocols of multithreaded classes. In: Pro-
ceedings of the 2009 ACM symposium on Applied Computing - SAC ’09. ACM
Press (2009). doi: 10.1145/1529282.1529407

7. Kramer, R.: iContract-the Java/sup TM/ design by Contract/sup TM/ tool. In:
Proceedings. Technology of Object-Oriented Languages. TOOLS 26 (Cat. No.98EX176).
IEEE Comput. Soc. doi: 10.1109/tools.1998.711021

8. Leavens, G.T., Baker, A.L., and Ruby, C.: Preliminary design of JML. ACM SIG-
SOFT Software Engineering Notes 31(3), 1–38 (2006). doi: 10.1145/1127878.
1127884

9. Liu, P., Dolby, J., and Zhang, C.: Finding incorrect compositions of atomicity. In:
Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering
- ESEC/FSE 2013. ACM Press (2013). doi: 10.1145/2491411.2491435

10. Meyer, B.: Applying ’design by contract’. Computer 25(10), 40–51 (1992). doi:
10.1109/2.161279

11. Pereira, H.G., Sousa, D.G., Bradbury, J., and Lourenço, J.M.: Automatic Genera-
tion of Contracts for Concurrent Java Programs. In: INForum 2022 - Atas do 14º
Simpósio de Informática (2022)

12. Sousa, D.G., Dias, R.J., Ferreira, C., and Lourenço, J.M.: Preventing Atomicity
Violations with Contracts. (2015). doi: 10.48550/ARXIV.1505.02951

13. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V.: Soot
- a Java Bytecode Optimization Framework. In: Proceedings of the 1999 Conference
of the Centre for Advanced Studies on Collaborative Research. CASCON ’99, p. 13.
IBM Press, Mississauga, Ontario, Canada (1999)

https://doi.org/10.1007/s11219-006-9001-4
https://doi.org/10.1007/s11219-006-9001-4
https://doi.org/10.1007/10722468_13
https://doi.org/10.1109/ICST.2017.25
https://doi.org/10.1145/1529282.1529407
https://doi.org/10.1109/tools.1998.711021
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1145/1127878.1127884
https://doi.org/10.1145/2491411.2491435
https://doi.org/10.1109/2.161279
https://doi.org/10.48550/ARXIV.1505.02951

	Automatic Generation of Contracts for Concurrent Java Programs

