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Abstract. Late demands for big data operation reveal shortcomings in
the traditional relational model and consequently shift the distributed
storage paradigm in favor of NoSQL databases. Such databases rely
mainly on DRAM operation and weak consistency models to achieve
high performance and availability.
In this work, we explore Persistent Memory (PMEM) hardware to en-
able large and cost-effective NoSQL deployments. More specifically, we
analyze different data allocation strategies and how they impact system
performance.
Our results show that DRAM is 2× and 1.5× and faster than PMEM for
write and read operations respectively. This performance gap motivates
system developers to adopt strategies that reduce the impact of PMEM
slow performance while taking advantage of its cost-effective capacity.
We show that static approaches are not flexible and do not adapt to
the running workload. For example, we see that with a static allocation
policy, we can be using a higher percentage of DRAM but still have worse
throughput and latency than with a higher percentage of PMEM.

Keywords: Heterogeneous Memory · Presistent Memory · Latency ·
Data Placement · NOSQL Databases

1 Introduction

Distributed storage systems are critical to support large-scale online services.
These services become increasingly demanding in terms of user experience. Such
demands have exposed shortcomings in the traditional relational model and
shifted the paradigm of distributed storage in favor of NoSQL databases, as
they successfully leverage weak consistency models, and mainly in-memory op-
eration to achieve high availability. Throughout this work, we will focus on the
latter.

Computer systems hosting databases rely on a two-level memory hierarchy
with contrasting technologies: volatile main memory devices (DRAM), providing
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fast access and small capacity; and non-volatile storage devices (SSD, magnetic
disks), with much higher capacity than main memory, but also much slower.
Moreover, storage devices are more cost-effective than main memory devices
but, due to their lower performance, they are not connected to the processor’s
memory bus. This means that applications do not have direct access to data and
have to go through the operating system [3].

However, recent advances in Persistent Memory (PMEM) [3,8] technologies
have introduced a new type of memory that shares characteristics of both main
memory and storage, namely high-capacity byte-addressable devices that are
slower than main memory but much faster than storage at a fraction of the cost
of memory. Intel’s Optane Datacenter Persistent Memory Module (DCPMM)
was the first PMEM module made commercially available in 2019 [3], providing
two operation modes, namely memory mode and app-direct mode. In memory
mode, DRAM becomes a hardware managed cache for PMEM, allowing the
transparent use of both DRAM and PMEM without requiring modifications to
the codebase. In app-direct mode, applications can explicitly access DRAM and
PMEM, either through a DAX-based file system or exposing PMEM as sepa-
rate NUMA nodes. DCPMM can provide up to 6 terabytes (TB) of memory
on a single machine, however its access performance is substantially worse than
DRAM, in particular w.r.t. write operations [11]. This performance gap moti-
vates heterogeneous memory configurations with both DRAM and PMEM, and
challenges programmers to develop data models that are capable of leveraging
PMEM’s larger capacities combined with DRAM’s performance.

Our goal is to address such challenges and explore PMEM hardware to enable
large and cost-effective NoSQL deployments. More specifically, we are interested
in the usage of PMEM only as an extension to DRAM and focus on how to min-
imize the impact of the slower performance of PMEM devices in such setting
trough data placement strategies. These strategies can be divided into static
and dynamic: With a static approach, data objects have predetermined loca-
tions (e.g., all keys on DRAM and all values on PMEM); And with a dynamic
approach, data objects move from one module to another according to a prede-
fined policy (e.g., most accessed data objects are placed on DRAM). Note that
dynamic data placement can be done at the application level and also at the OS
level by monitoring page access patterns.

While static approaches are simple to reason about and implement, they are
not flexible to application requirements in different scenarios, and hence do not
achieve the best possible performance. Dynamic approaches, on the other hand,
have the potential to achieve better performance but are complex and can include
mechanisms such as periodic profiling [7], which in turn consume more resources.
Moreover, dynamic strategies rely on data migration between different kinds of
memories, which consumes bandwidth that could be used by normal application
operation. This also includes prefetching data objects directly from PMEM to
processor-cache, noting that this approach is extremely time sensitive due to
cache evictions.
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There are, in the literature, proposals that combine the aforementioned data
placement strategies [11], however they do not consider the NoSQL domain which
is particularly interesting because NoSQL databases benefit from larger capaci-
ties and performance is often a key aspect. In this work, we present an analysis
on the impact of static data allocation strategies provided by a state-of-the-art
NoSQL with support for PMEM operation.

The remainder of this document is organized as follows. In Section 2, we
discuss our proposal. Section 3 outlines the work carried out. In Section 4, we
present and discuss the obtained results.

2 Proposal

In our evaluation, we analyze four different static allocation strategies imple-
mented on a NoSQL database. Two of such strategies consist in allocating data
only to one kind of memory (i.e., either DRAM or PMEM). The other two use
both kinds of memory by choosing where to allocate data based on a predefined
parameter. More specifically, one of such strategies follows a threshold parame-
ter, having all allocations equal or greater to said threshold target PMEM and
all others DRAM. The other, allocates data to PMEM or DRAM following a
ratio parameter (e.g., 30% data to DRAM and 70% to PMEM). These strate-
gies do not make any distinction between application data and metadata. For
example, system metadata in most cases consists of small objects that are rarely
written but also very frequently read as shown in [11], hence should be placed
on DRAM and with the abovementioned approaches could end up on PMEM.
Moreover, they are not flexible and do not take into consideration the workload
which the database is being submitted to. Also, we should expect that config-
urations of such parameters will behave worse somewhat proportionally to the
PMEM usage. For this reason, we expect such strategies to not achieve optimal
performance, leaving room for optimization.

As stated before and shown on Section 4, static approaches are simple, but
their lack of flexibility makes them unsuitable for applications that can experi-
ence different workloads and access patterns such as NoSQL databases. Other,
more promising, approaches that have been proposed in the literature [7,11] com-
bine both dynamic and static data allocation policies. Such approaches leverage
data migration between DRAM and PMEM (and even CPU cache, as we will
discuss further in this Section). However, handling data migration poses some
challenges. Namely, since our goal is to optimize performance, stopping the ap-
plication to migrate data is not a viable option. Hence, data migration has to
be carried out in the background, notwithstanding the fact that it consumes
resources that could be critical for application execution. Furthermore, choosing
the right data to move between memory modules dynamically requires either full
knowledge of the application behavior and workload, or some kind of mechanism
that monitors application access patterns and triggers the migration accordingly,
which in turn also consumes resources that could be required by the application.
Such challenges can be addressed with thorough application analysis to find out
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idle execution points where data migration would not impact application per-
formance, or by lowering the overhead of the migration or profiling mechanisms.

Ideally, all data objects should be allocated to DRAM. However, if that is
not possible, frequently accessed objects and short-lived objects should be prior-
itized. With this in mind, and considering the proposal by Jie Ren et al. in [11]
we intend to explore the combination of static and dynamic data placement with
processor-cache prefetching. To that end, we plan on breaking up the NoSQL
data model. System’s metadata (e.g., database hash table structure) and short-
lived objects should be placed in DRAM. Database records should be dynami-
cally placed in DRAM and PMEM. In NoSQL databases, the interval between
the moment a client request reaches the system and the moment the ditto request
is processed can be used to move the requested records from PMEM to DRAM
if necessary. Our goal is to leverage this by record migration from PMEM do
DRAM or, alternatively, by prefetching records directly to processor-cache. The
processor-cache prefetching approach is simple but has some drawbacks, namely
it has to be executed right before the record is going to be accessed in order
to avoid being evicted due to cache conflicts. Moving data between PMEM and
DRAM, on the other hand, is a more challenging and slow process but can have
long-term improvements (e.g., when a record is frequently accessed, it is better
to move such record to DRAM once instead of perfecting it to cache at every
request). In summary, processor-cache prefetch presents a good option when the
system is not saturated and the window between the request arrival and process-
ing is short. However, if a subset of records is being frequently accessed and/or
the system is saturated making the time window wider, which in turn raises
the probability of the record being evicted from cache before it is accessed. Note
that it might also be useful to differentiate between read and write requests (i.e.,
records subject to write requests should have priority in DRAM placement).

With this work, we propose to perform a thorough analysis of a NoSQL
database to further help identify what objects should be statically placed on
DRAM and what object should be subject through data migration either by
fetching them from PMEM to DRAM or CPU cache under what circumstances.
As future work, we plan on developing a mechanism based on this Section’s
proposal. for the NoSQL domain that optimizes memory usage performance in
heterogeneous PMEM systems.

3 Approach

In order to achieve the goals stated in Section 2 we have to choose a NoSQL
database to evaluate the performance impact of the data allocation policies.
TieredMemDB[2] is a fork of Redis that supports PMEM operation, having
a number of static data allocation policies already implemented that can be
selected and parameterized through a configuration file, which is convenient in
our use case. It is fully compatible with Redis and supports all its structures.
TieredMemDB leverages the Memkind [6] library as an extensible heap manager
built on top of jemalloc, to provide an implementation for the static data
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placement strategies, as described on Section 2. More specifically, there are four
available and configurable memory allocation policies withing TieredMemDB
that can be selected by setting the memory-alloc-policy parameter to any of
the following options: only-dram, only-pmem, threshold, and ratio.

The threshold policy uses both DRAM and PMEM according to the value
of the static-threshold parameter. When this policy is selected, the database
will check the value of the static-threshold at each allocation and: If the allo-
cation size is equal or greater than its value on bytes, it goes to PMEM. Else it
goes DRAM. The ratio policy uses both DRAM and PMEM according to the
dram-pmem-ratio parameter. With this policy, the database allocates part of the
data in DRAM and part in PMEM based on a value of the dynamic-threshold.
At runtime, the database periodically monitors DRAM and PMEM usage and
changes the value of dynamic-threshold to achieve the configured ratio. For
example, configuring the database with dram-pmem-ratio 1 3 would approxi-
mately make 25% of the allocations to DRAM and 75% to PMEM. Addition-
ally, there is also a parameter that specifies whether the hash table is placed on
DRAM or PMEM (e.g., hashtable-on-dram yes).

In this work, we submit these policies to several workloads with the goal
of comparing them and measuring how much they affect system performance.
We use the Yahoo! Cloud Serving Benchmark (YCSB) framework and its stan-
dard workloads, measuring the latency and throughput for each combination
of workload and policy. We also generated two different new workloads that
execute 100% of each operation respectively: insert and read. Measuring the
memory usage was carried out by periodically running the numastat system util-
ity and extracting its output. The results of the tests are presented and discussed
in the next Section.

4 Evaluation

4.1 Hardware Setup

The experiments were executed in one machine made available by Grid 5000 [4].
The machine used is located at the Grenoble site and is part of the troll cluster
with a Intel Xeon Gold 5218 (Cascade Lake-SP, 2.30GHz, 2 CPUs/node, 16
cores/CPU), and 384 GiB + 1.5 TiB PMEM.

TieredMemDB accesses PMEM as separate memory-only NUMA node(s).
We have configured the database to use one of the PMEM node with approxi-
mately 756 GB.

4.2 Workloads

For our experiments, we use the YCSB client and respective standard workloads
as described in Table 1. Workloads A through F are the standard workloads of
YCSB, and were run so that we could compare the results with evaluations in
other works and assess whether the behavior for each workload in TieredMemDB
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Work-
load

Descrip-
tion

Operation
Ratio

Request
Distributions

Application
Example

A Update
heavy

read/update
ratio: 50/50 zipfian Session store recording

recent actions.

B Read
mostly

read/update
ratio: 95/5 zipfian

Photo tagging; Add a tag
is an update, but most
operations are to read
tags.

C Read
only

read/update
ratio: 100/0 zipfian

User profile cache, where
profiles are constructed
elsewhere.

D Read
latest

read/update/insert
ratio: 95/0/5 latest

User status updates;
people want to read the
latest.

E Short
ranges

scan/insert
ratio: 95/5 zipfian

Threaded conversations,
where each scan is for the
post in a given thread
(assumed to be clustered
by thread id).

F
Read-

modify-
write

read/read-modify-write
ratio: 50/50 zipfian

User database, where user
records are read and
modified by the user or to
record user activity.

Table 1: Standard YCSB workloads.

was similar to Redis. Additionally, we have generated two separate workloads:
workload I executes 100% inserts and workload R executes 100% reads. The
motivation behind these workloads was that they allow us to observe the differ-
ence between read and write operations and how they influence performance.

For each workload, we executed 1 million operation over a deployment with 10
million records with 1KB (i.e., 10 fields, 100 bytes each, plus key). In total 10
GB of records.

4.3 Results & Discussion

We present the average results of 4 runs comparing the maximum memory us-
age and overall performance of all the previously mentioned memory allocation
policies. For the standard YCSB workloads, TieredMemDB follows the patterns
of other Redis benchmarks [1,5,9,10] having workloads A, B, C, D and F with
similar performance and workload E substantially worse. Also, note that work-
load E consumes more memory as the server allocates data resulting from the
scan before sending it to the client.

The memory usage of only-dram and only-pmem can be observed in Figure 1.
Note that in Figure 1b the only-pmem policy still uses a small fraction of DRAM
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(a) only-dram. (b) only-pmem.

Fig. 1: only-dram and only-pmem memory usage.

due to the hash table placement configuration. In the experiments described in
this Section, we configured the hash table to be allocated to DRAM.

Threshold The threshold policy was configured with the following values (in
bytes) for static-threshold: 16, 32, 64, 104, 105. Our goal was to gradually
increase the threshold until the approximate value of the max allocation size
used by the database (104 bytes).

We show in Figure 2 that there is noticeable difference in the memory usage
pattern between 16 and 32 bytes: With a 32 bytes threshold, the database uses
about 1.7× more DRAM. The 32 an 64 byte thresholds present similar memory
usage values, and we also show that an 104 byte threshold uses roughly 1.1× more
DRAM than the 64 and 32 byte thresholds. Finally, the 105 byte threshold places
all allocations in DRAM, representing a 2.4× increase of DRAM usage when
compared to the 104 byte threshold. We executed several tests with different
threshold values from 64 bytes up to 104 bytes, and the difference in memory
utilization for such was negligible. The records represent the majority of the
database data (i.e., 10 GB) and they are split into fields of 100 bytes each,
explaining the growth in memory usage between 104 bytes (Figure 2d) to 105
bytes (Figure 2d) which is about 10GB and represents the volume of the records.
Note that we would expect the growth to happen at the 100 bytes threshold but
in practice the allocations regarding record fields take 4 extra bytes.

Performance wise, we separate the results for the standard workloads (Fig-
ure 3a and Figure 3b) and for our workloads (Figure 3c and Figure 3d). The
figures show that the inverse relation between the latency and throughput, as
expected. In the standard workloads there is large difference in performance from
the workload E to the other workloads, due to the nature of scan operations.
In the bottom half of the figure, we can clearly see the difference in perfor-
mance between the read and insert operations: in average, workload R (read)
has about 2.5× more throughput than workload I (insert), which in turn has
about 2× higher latency. In workload I, using DRAM achieves 2× more through-



8 J. Antão et al.

(a) 16 Bytes. (b) 32 Bytes. (c) 64 Bytes.

(d) 104 Bytes. (e) 105 Bytes.

Fig. 2: threshold memory usage.

put and achieves 2× shorter latency than using PMEM. On the other hand, with
workload R, using DRAM produces 1.3× more throughput and achieves 1.5×
shorter latency than using PMEM. In summary, we can see that write operation
produce a higher impact on performance than read operations and the more
PMEM is used, the slower the database becomes.

Ratio The ratio policy was configured with the following values (in percentage
of DRAM usage): 17%, 25%, 33%, 50%, 67%, 75% and 83%. Our goal is to
validate that the implementation matches the specification and to gradually
increase the percentage of DRAM used while measuring the performance impact
of such increases.

In Figure 4, we can see that the results approximately respect the ratio
configuration validating TieredMemDB’s implementation of the ratio policy.

We can also see that the performance results in Figure 5 are somewhat sim-
ilar to those of the threshold policy in Figure 3. The only difference is that
with workload R (Figures 5c and 5d), increasing the portion of DRAM used
does not improve performance in some cases (e.g., from 50% to 67%). With the
ratio policy implementation as described on Section 3, it is possible that higher
percentage of frequently accessed objects could be allocated to DRAM with 50%
than with 67%, because the ratio policy disregards access frequency, the dynamic
threshold value is changed periodically, and it is not easy to predict whether with
different parameters the same data object will be allocated to different kinds of
memory.
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(a) Standard workloads threshold throughput. (b) Standard workloads threshold latency.

(c) Operation workloads threshold throughput. (d) Operation workloads threshold latency.

Fig. 3: Insert/Read threshold performance.

4.4 Summary

In this Section, we have shown that PMEM slow performance impacts the over-
all database performance negatively. However we also showed that performance
degradation is not linearly proportional to PMEM usage, namely when requests
comprise insert operations. For example, we can see in Figure 2 that the dif-
ference in memory usage between 32 bytes and 64 bytes is negligible, but in
Figures 3c and 3d there is a noticeable difference in performance. This means
that we can have the same PMEM usage and still achieve better performance
depending on what we choose to allocate to each kind of memory. In summary,
more flexible approaches that take into account the application access patterns
can possibly achieve better performance than the static approaches

5 Related Work

In this work, we have evaluated static data placement on the NoSQL domain and
proposed to explore a new strategy for data allocation that combines static and



10 J. Antão et al.

(a) 17% - 83%. (b) 25% - 75%. (c) 33% - 67%.

(d) 50% - 50%. (e) 67% - 33%. (f) 75% - 25%.

(g) 83% - 17%.

Fig. 4: ratio memory usage.

dynamic data placement with processor-cache prefetching. There is a particular
work which inspired our proposal. That work is WarpX-PM by Jie Ren en. al [11].

WarpX-PM WarpX is an advanced plasma simulation code which is mission-
critical and targets future exascale systems. After a thorough analysis of WarpX,
Ren et al. [11] propose the WarpX-PM runtime system, extended from WarpX to
manage data placement between DRAM and PMEM automatically. In WarpX-
PM, DRAM is partitioned into four spaces to store data objects with different
characteristics and access patterns: Short-lived objects that are frequently allo-
cated and freed, such as local variables in functions, go to the temporary space;
The metadata space stores long-lived objects that are not frequently updated but
are frequently accessed; the migration space is used to prefetch data from PMEM
to DRAM before they are required by the computation; Finally, the free space is
used to store the maximum possible field data. In these four spaces, WarpX-PM
combines static and dynamic strategies, and processor-cache prefetch mechanism
for data placement. The migration space is used for dynamic data placement
and the remainder three spaces are used for static data placement. The authors
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(a) Standard workloads ratio throughput. (b) Standard workloads ratio latency.

(c) Operation workloads ratio throughput. (d) Operation workloads ratio latency.

Fig. 5: ratio performance.

carefully study what size these spaces should have and also propose a perfor-
mance model for the processor-cache prefetch and migration mechanisms.

WarpX-PM improved WarpX’s execution on Optane-only by 66.4% and out-
performed DRAM-cached, the NUMA first-touch policy, and a state-of-the-art
HM solution by 38.8%, 45.1% and 83.3%, respectively.

6 Conclusions

The emerging large-capacity of PMEM enables large and cost-effective NoSQL
deployments. However, leveraging PMEM for real world NoSQL deployments
remains to be investigated. In this paper, we present an analysis of several static
allocation policies provided by a NoSQL database called TieredMemDB [2] and
their impact on system performance. Our results show that these approaches are
not flexible, as they do not take into consideration the application domain and
do not adapt to the workload.

With this in mind and as future work, we plan on exploring a new mechanism
for memory allocation in Redis that combines both static and dynamic data
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placement with processor-cache prefetching, inspired on the work done by Ren
et al. [11].
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