
OSCAR - A Java Noise Injection Framework⋆

Filipe de Luna1 , Jeremy S. Bradbury2 , and João M. Lourenço1

1 NOVA University Lisbon — FCT & NOVA LINCS, Portugal
f.luna@campus.fct.unl.pt joao.lourenco@fct.unl.pt

2 Ontario Tech University, Canada
jeremy.bradbury@ontariotechu.ca

Abstract. Concurrent programs offer much better and scalable per-
formance, at the cost of being notoriously harder to design and to as-
sess their correctness. Noise injection presents itself as a strategy to
mitigate the negative effects of non-determinism in concurrent software
testing, by increasing the diversity (coverage) in the observed interleav-
ings of a concurrent program. In this paper we propose a novel open-
source noise injection framework for the Java programming language
(OSCAR), together with a novel taxonomy for categorising new and ex-
isting noise injection heuristics. When noising some synthetic benchmark
programs with different heuristics, we observed that OSCAR is highly
effective in increasing the coverage of the interleaving space, and that
the different heuristics provide diverse trade-offs on the cost and benefit
(time/coverage) of the noise injection process.

Keywords: Noise Injection · Java Bytecode · Instrumentation · Con-
currency · Error Detection · Static Analysis

1 Introduction

As multicore processors become ubiquitous, software needs to be designed and
optimised to make use of the potential performance gains stemming from the
use of concurrency. Concurrent programs come with added performance and effi-
ciency, through the coordinated usage of additional threads to execute indepen-
dent sub-tasks, at the cost of added complexity and an overall increase in nature
and number of errors, stemming from their non-deterministic nature. Unlike se-
quential programs, which only depend on their input, concurrent programs also
depend upon temporal events, meaning their number of possible interleavings
rises exponentially with respect to the number of threads and instructions [3].

Standard program testing techniques quickly proved themselves ineffective
against such a massive number of possible interleavings. Especially given that
some of these interleavings may have a very low probability of occurrence, being
highly dependent on the (non-deterministic) thread scheduler [1]. Essentially

⋆ Supported by Research Grants PTDC/CCI-COM/32456/2017 & LISBOA-01-0145-
FEDER-032456.

https://orcid.org/0000-0003-0382-0031
https://orcid.org/0000-0002-5204-908X
https://orcid.org/0000-0002-8495-6442


2 F. de Luna et al.

meaning that if an erroneous were to occur, it would be incredibly difficult to
reproduce, and if it were not, it would give the tester an illusion of correctness.

One approach to designing testing tools able to reliably tackle such massive
amounts of interleavings, is to leverage the probe effect [8] to our advantage. The
probe effect is the observable difference in a concurrent program’s behaviour upon
having delays introduced into its routine. Noise injection is a technique that
leverages on the probe effect to introduce delays into specific program locations,
using heuristic-based policies, to optimise the influencing of the scheduler. By its
nature, noise injection is a confidence (i.e., best-effort) technique, and it cannot
be guaranteed to trigger every possible interleaving.

This paper proposes and evaluates a novel shared-memory-oriented noise in-
jection framework for concurrent software written using the Java programming
language. This framework, named OSCAR (Open-source Static Concurrency
AnalyseR), injects noise into Java bytecode by means of intermediate code in-
strumentation, relying on the Soot [14] Java bytecode instrumentation frame-
work. Being fully open-source, OSCAR will fill an existing void in the availability
of noise injection frameworks for concurrent software written in Java. Addi-
tionally, this paper proposes a novel taxonomy for categorising noise injection
heuristics and a strategy to evaluate interleaving distances.

In this paper, OSCAR is used to inject noise into Java concurrent programs
and the impact of this noise is then measured and evaluated. The results show
that, overall, OSCAR can be reliably used to explore the interleaving space of a
concurrent Java program.

2 Noise Injection Heuristics

As a concurrent program’s complexity increases, so does the number of possi-
ble interleavings, rendering a systematic and exhaustive state space exploration
approach (as proposed in Java PathFinder [15]) infeasible [5]. Noise injection
heuristics solve this problem by precisely noising the locations which are most
likely to disturb the scheduling [7], thus triggering additional interleavings. Some
of the biggest challenges in the field of noise injection include: continuously im-
proving existing heuristics, creating novel heuristics and, finally, finding the right
heuristic for a given application, as a one-size-fits-all heuristic does not exist [11].
These noise injection heuristics are made up of two components—noise place-
ment and noise seeding—, which together define how to generate the noise abd
where to place it [5].

2.1 Noise Placement and Seeding

The noise placement component of a noise injection heuristic is responsible for
defining which program locations are the most suitable for noising (i.e., most
likely to affect scheduling), along with when (i.e., in which runs of the program)
the noise at these locations will be triggered [11]. An example of a perfectly valid



OSCAR - A Java Noise Injection Framework 3

noise placement strategy would be to insert a bounded randomised amount of
noise before and/or after every access to an atomic block.

Noise seeding, includes choosing a noise type to be generated, its frequency
and its intensity [9]. Frequency is defined as the probability function of noise
being triggered at each chosen location. Intensity (also called “strength” [5]) is
characterised by how much the system itself is impacted by the noise.

Although all noising techniques essentially have the same purpose, to influ-
ence the scheduler to disturb a running program’s behaviour, some are more
effective at this task than others [3]. Additionally, many noise heuristics rely on
a specific type of noise for their implementation, meaning noise types are not
interchangeable, with an example being the Barrier heuristic proposed in [4].

However, the use of any of these noise injection primitives will result in some
level of performance degradation, attributed to the additional thread delays and
context switching is forced upon the scheduler, even in cases where a sleep has
a nil value, or a yield is ignored by the scheduler.

Some of the most notable examples of noise types for Java include:

Sleep: Inserting a Thread.sleep(t) statement, temporarily suspending the ex-
ecution for an interval of time t, releasing the processor to execute another
thread’s task;

Yield: Inserting a Thread.yield() statement, which will hint the scheduler
of a thread’s willingness to yield its use of a processor. The effect of this
operation is not deterministic, as the scheduler is free to ignore it;

Wait: Inserting a lock.wait() statement, which suspends a thread’s execution
until it is awaken by another thread;

Priority: Inserting Thread.priority(p) statements, forcing the scheduler to
prioritise the execution of threads with a higher priority value, in detriment
of the ones with a lower priority value.

Research has shown that, overall, the sleep primitive is the most effective
primitive at triggering additional interleavings, consequently resulting in im-
proved error detection [3].

2.2 Noise Injection Heuristic Taxonomy

As part of our research, we developed a taxonomy for noise injection heuristics,
with the express purpose of achieving coherence between the heuristics proposed
by different researchers. We categorise the heuristics into the following categories:

Synchronisation-block-based: For this heuristic, noise can be injected be-
fore, after and/or inside synchronised blocks (i.e., enclosed by a lock or
atomic register).

Read/Write-based: In this heuristic, noise is injected before and/or after
shared-variable accesses. This heuristic is particularly helpful for finding
common write-read and read-write data race scenarios [5]. An algorithm
can be used to detect shared variables, so that only the accesses to these



4 F. de Luna et al.

variables are tracked and noised. Since shared variables are registered, this
heuristic can be used while focusing the testing process on specific, previously
suspicious variables. Research has shown that restricting noised locations to
shared variable accesses will increase error detection probability [4];

Function-based: Insert noise either inside of, before and/or after function calls.
This technique can also be used to noise specific monitored functions;

Thread-based: Inserting noise that is only triggered for a specific thread;
Pattern-based: Noise is injected in program locations where the code exhibits

a particular pattern, such as a repeated access to the same variables in a
method, as proposed in [5].

Random: A mix of all the other heuristics, with noise being triggered randomly
when arriving at locations relative to each heuristic. This technique was
shown to perform poorly actually masking concurrency errors [10].

It is important to keep in mind that this is not an exhaustive list and that
none of these noise localisation and seeding heuristics are mutually exclusive, al-
lowing the use of a hybrid solution that employs a harmonious mixture of various
localisation and seeding heuristics. Lastly, research has shown that no heuristic
is best for every use case, with every situation requiring the tester’s careful
consideration [12]. This task has been formalised as the TNCS problem [9].

3 OSCAR

The main drive for undertaking this project was to further research in the field
of noise injection in Java, investigating proposed noise injection heuristics, un-
derstanding how to apply them to Java concurrency primitives, proposing novel
variations of these heuristics, and researching methods to evaluate their impact.
To do so, however, we are faced with several challenges, including: how to design
a generalised instrumentation solution; which methods/statements/primitives to
instrument; where noise should be localised; how to handle edge-cases in instru-
mentation; what are the pitfalls of noise injection; and how to measure and
evaluate the impact of noising, e.g., coverage of the interleaving space.

The need for creating a novel noise injection framework became apparent
given the scarcity of solutions available for concurrent Java software. The most
notable framework for this language, ConTest [3], is no longer available or under-
going active development. As such, we propose OSCAR as a novel open-source
shared-memory-oriented static analysis framework, relying on bytecode instru-
mentation to inject noise into concurrent Java programs.

OSCAR’s main objective, as a framework, is to not only be used for stan-
dalone testing, but also as a building block for other, more opinionated, testing
tools. The choice of Java as the target language is due to its portability and wide
adoption. The Java instrumentation done by OSCAR is at the bytecode level
and supported by the Soot framework [14], allowing a more fine-grained level of
access when injecting noise into Java’s built-in concurrency constructs. Through
Soot, OSCAR supports Java bytecode up to version 9.



OSCAR - A Java Noise Injection Framework 5

Run program 
transformers

Run body 
transformers

Run body 
transformers

Run body 
transformers

Capture
exits

Capture
exits

Capture
exits

Bootstrap
controller

Capture
exceptions

Original program
(Java Bytecode)

OSCAR
Controller

Exception 
handler

Noise 
library

OSCAR
noise injector

Log-
ging

Noised program
(Java Bytecode)

Fig. 1: OSCAR’s architecture.

3.1 Architecture

In Figure 1, we present the architecture of OSCAR’s instrumentation engine.
OSCAR takes a (compiled) Java Bytecode program as input, and runs a series
of instrumentation steps, resulting in a new transformed/noised version of the
same program. The following Sections describe the implementation of each of
the components described in Figure Figure 1.

OSCAR Noise Injector The first step is to transpile the Java program’s byte-
code to the more readable Jimple alternative intermediate representation, which
alleviates many of the difficulties stemming from Java bytecode analysis. Each
instrumentation step of the noise injector, is implemented as a Soot Transformer,
either for every Java method body or for the whole program.

After Soot has transpiled the program bytecode to the Jimple format, the
OSCAR instrumentation engine begins, relying on callgraph exploration to se-
rially execute a series of non-parallelizable Soot transformers. Ideally every in-
strumentation would be done resorting to body transformers, which are ran in
parallel, allowing for superior performance. But, since not all instrumentation
logic is parallelisable, some transformers have to be implemented via program
transformers.

The next step is to initiate a parallel pipeline for every method body, execut-
ing every body transformer in order, followed by the method body transformer
responsible for capturing every exit call. Then, the OSCAR Controller logic is
bootstrapped to the main/initial method. Lastly, the original program’s code
is surrounded by a try/catch block, allowing OSCAR to catch any exceptions
thrown by the instrumented program.

OSCAR Controller OSCAR’s instrumentation process creates a new instru-
mented program which contains the Controller bootstrapped to the original pro-
gram. The Controller is OSCAR’s dynamic noising engine which allows for the
control of noise type, noise intensity, active noise heuristics, output methods
and other configurable parameters, when running the new, noised program. The
Controller logic can be broken down into the following components:

Noised Program: The original program’s main method is replaced with a wrap-
per which passes arguments to the bootstrapped Controller. The Controller can



6 F. de Luna et al.

parse arguments passed into the program to parameterise its noise injection rou-
tine. Every instrumentation statement is implemented as a call to a Controller
method, which contains the necessary logic. This approach allows for reusing
and more easily maintaining the code responsible for the analysis of the noised
program.

Noising Library: Every single noise statement is implemented as a call to the
noise method of this Controller. Noise instructions are statically instrumented
into the program’s bytecode, while the noise itself is triggered dynamically, as the
program runs. The amount of noise triggered upon reaching a noising location
is random, with configurable bounds.

The noise method takes as a parameter an hardcoded UUID, uniquely rep-
resenting a program trace location, along with the noise category and placement
types, so that they can be enabled or disabled on a per case basis.

Tracing/Logging: Since the noise statements are already inserted at heuristi-
cally determined key synchronisation locations, the tracing piggybacks on the
noising statement and can be configured to be triggered before and/or after the
noising logic.

The trace information that OSCAR outputs, consists of an ordered set of
strings which represent the order of arrival to trace locations. These strings are
each a tuple constituted by a non-deterministic thread IDs and the trace location
UUID.

Exception Handler: Since the program can crash or exit unexpectedly during
its execution, all calls to System.exit are captured and the program’s main
method is wrapped in a try/catch block that captures every exception type.
This mechanism allows for a graceful exiting, which is invaluable for a user to
understand the reason for this abrupt exit. Such understanding can be derived
from the interleaving trace, which is composed of information originating from
calls to the Controller’s noise method.

Listing 1 depicts a simple program which launches a series of threads and in-
crements their value inside a synchronized block, before and after being processed
by OSCAR’s instrumentation engine. The final instrumented executable contains
noise statements in before and after the thread launch, before the thread’s rou-
tine and before and after the synchronized block. Additionally, it is possible to
see how OSCAR wraps the original main method in order to provide a graceful
exit mechanism.

3.2 Features

According to [3], the sleep primitive has been shown to be the most effective
at triggering additional interleavings, when executing an instrumented program
multiple times. However, this efficacy comes at the cost of a significant slowdown
of the execution [7]. As such, besides sleep-based heuristics, OSCAR also sup-
ports yield -based heuristics, which cause almost no execution slowdown. This
will allow the tester to leverage the strengths of both noise types.



OSCAR - A Java Noise Injection Framework 7

static Counter counter = new Counter();

public static void main(args) {
for (int i = 0; i < args[0]; i++) {

Thread t = new Thread(Main::add);
t.start();

}
}

public static void add() {
synchronized (counter) {

Counter.add();
}

}

Before OSCAR’s instrumentation

static Counter counter = new Counter();

public static void main(args) {
try {

main_wrapped(Controller.start(args));
} catch (Exception e) {

Controller.exception(e);
}
Controller.end(e);

}
public static void main_wrapped(args) {

for (int i = 0; i < args[0]; i++) {
Controller.noise(BEFORE_THREAD_START, UUID);
Thread t = new Thread(Main::add_bootstrap);
t.start();
Controller.noise(AFTER_THREAD_START, UUID);

}
}
public static void add_bootstrap() {

Controller.noise(BEFORE_THREAD_ROUTINE, UUID);
add();

}
public static void add() {

Controller.noise(BEFORE_SYNC_BLOCK, UUID);
synchronized (counter) { counter.add(); }
Controller.noise(AFTER_SYNC_BLOCK, UUID);

}

After OSCAR’s instrumentation

Listing 1: OSCAR noise instrumentation example.

In OSCAR, noise categories do not have a direct correlation to Java primi-
tives, but instead group a set of related placement locations to more closely rep-
resent the heuristics in the proposed taxonomy. For example, “Synchronization-
based” is a category and “After Synchronized method call” a specific location.
Currently, OSCAR supports the noising of the following Java primitives:

Synchronized method calls: noise is injected before and/or after method
calls;

Synchronized blocks: noise is injected before the start and/or after the end
of synchronized blocks;

Reentrant locks: noise is injected before and/or after the lock and unlock
operations;

Threads: noise is injected before and/or after the thread is launched and be-
fore the thread’s routine begins. Supports Runnable objects, lambdas and
method references as thread arguments.

The following parametrisation is currently implemented and available from
the OSCAR Controller’s CLI:

Noise type: the noise intensity is randomised between a range defined by upper
lower bounds. It is also possible to completely disable the noise injection;

Noise intensity: the noise intensity is always randomised between an upper
and a lower bound which can be set. It is also possible to completely disable



8 F. de Luna et al.

the noise injection. Its value represents the duration in milliseconds or the
number of repetitions, for the sleep and yield noise types, respectively;

Heuristic selection: the user is free to select which noise categories and place-
ments will be active in each run;

Controller trace output: it is possible to output the trace with the interleav-
ings of a run to either a file or the console. In order to avoid the performance
deterioration of file I/O accesses, an option for in memory trace collection
with file output at program exit, is also available.

Class blacklisting: it is possible to blacklist specific classes and/or namespaces
to be ignored by OSCAR in the instrumentation process;

4 Evaluation

In this section, OSCAR’s functionalities will be validated through the analysis of
the interleaving information obtained from batch testing two sample programs.
The test bench consisted of a Linux KVM instance, limited to a single core
and 4GB of RAM, running Ubuntu 22.04, on an AMD Ryzen 7 3700X 16-core
processor and 24GB of RAM. We opted for a single-core system due to the
necessity of creating an environment where the yield primitive would have an
effect, a choice which was also made in [3].

During evaluation, both of the identifiers of each tuple in a trace are mapped
to unique symbols, to avoid collisions and facilitate readability and analysis. It
is important to note, however, that this technique ignores the thread spawn
order, as it assigns new IDs to threads and interleavings based on order of
their appearance, which allows us to ignore a plethora equivalent interleav-
ings. An example of equivalent interleavings, represented by sets of (thread ID,
trace location) tuples, with two threads t1 and t2 executing the same code con-
taining two instrumentation points a and b, is {(t1, a), (t1, b), (t2, a), (t2, b)} and
{(t2, a), (t2, b), (t1, a), (t1, b)}. As such, the results will show a lower number of
different interleavings than would otherwise be expected. After a trace is con-
verted to a string representation, a heuristic can determine the string distance
between interleavings. This metric allows us to compare interleaving likeness.

We extract two main metrics from OSCAR’s trace information:

Number of unique interleavings: This metric represents the number of x
non-equivalent interleavings in y runs, where x ≤ y. A higher number of
unique interleavings directly correlates with a higher amount of the pro-
gram’s state space being explored. However, it is important to notice that
interleavings are defined only by the trace locations captured by OSCAR,
meaning equivalent interleavings using this metric may actually be different
if we consider the full set of program states;

Interleaving distance: This metric measures the distinctness of the observed
interleavings and uses Levenshtein distance [13], the number of modifications
which must be made to a string to transform it into another. An interleav-
ing is encoded as a string of Unicode characters representing a sequence of



OSCAR - A Java Noise Injection Framework 9

0 2,000 4,000
0

2,000

4,000

Number of Runs

N
.o

f
U

ni
qu

e
In

te
rl

ea
vi

ng
s

(a) Number of unique interleavings.

0 2,000 4,000
0

2

4

6

8

Number of Runs

A
ve

ra
ge

D
is

ta
nc

e

(b) Average interleaving distance.

Sleep (1–5ms) Sleep (1–25ms) Yield (1–10 times) Yield (1–50 times)
Sleep (1–10ms) Yield (1–5 times) Yield (1–25 times) Unnoised

Fig. 2: Results from the PrintID program.

thread ID/noised location pairs. A higher distance between two interleavings
indicates they are more distinct.

For both programs, the noising locations before and after threads are started
were disabled, as they have a tendency to serialise execution. This effect makes
state space exploration much harder in programs where threads with similar
routines are sequentially started (e.g., in a loop), while simultaneously sharply
rising the program run time.

4.1 PrintID Program

The first program used to evaluate OSCAR is PrintID (see Figure 2). PrintID
spawns a series of threads, with each thread printing its ID and then joining the
main thread. In PrintID, each thread’s routine consisted of a single instruction,
which meant the program executed extremely fast. However, even with a small
amount of instructions, it is important not to choose too high a number of
threads, as the number of possible interleavings will grow exponentially. The
number of threads chosen for this first test was eight.

In our evaluation, we found that setting the sleep intensity in the 1–5ms range
was sufficient for triggering thousands of different interleavings in PrintID, with
higher numbers showing diminishing returns. Furthermore, yield showed a much
lower efficacy at generating a higher number of unique interleavings. From Fig-
ure 2(a) it is possible to conclude that injecting noise with OSCAR highly raised
the overall number of witnessed interleavings in the PrintID program.

While the number of unique interleavings grew with yield intensity, this is
more easily attributed to the processing delays incurred by successive calls to
the yield function. Figure 2(b) shows the average distance between generated
interleavings. All the values are somewhat similar, with the exception of the



10 F. de Luna et al.

0 2,000 4,000
0

2,000

4,000

Number of Runs

N
.o

f
U

ni
qu

e
In

te
rl

ea
vi

ng
s

(a) Number of unique interleavings.

0 2,000 4,000
0

5

10

Number of Runs

A
ve

ra
ge

D
is

ta
nc

e

(b) Average interleaving distance.

Sleep (1–5ms) Sleep (1–25ms) Yield (1–10 times) Yield (1–50 times)
Sleep (1–10ms) Yield (1–5 times) Yield (1–25 times) Unnoised

Fig. 3: Results from the Account program.

unnoised runs which, as expected, show a much lower average distance, as there
are very few unique interleavings. Interestingly, in this scenario, yield is shown
to be better at generating interleavings which are more distinct from each other.
This can be attributed to the relatively high number of threads compared to
the physical cores and the context switching that is forced upon the scheduler.
Overall, the 1–5ms sleep was the most effective noise seeding for this test.

Since the state space grows linearly up to 5000 runs, it is likely that a con-
siderable amount of additional interleavings exist. This understanding can be
leveraged to a tester’s advantage, allowing one to grasp the dimension of the
program’s state space.

4.2 Account Program

The second program that was tested was the Account program, in which a series
of spawned threads simulate bank transactions between each other. In contrast
to PrintID, which only included one noised Java primitive (threads), this pro-
gram contains three primitives (threads, synchronized methods and synchronized
blocks), in multiple program locations. This results in a much bigger state space,
as a consequence of all the additional trace locations. To mitigate the state space
explosion, the number of spawned threads for this program was set to two.

From Figure 3, it is possible to visualise the results for the Account program
testing with OSCAR. The first observable phenomenon is the fact that sleep
noise seeding performance eclipsed both the yield and unnoised results. The
number of unique interleavings grows almost linearly for the sleep’s 1–25ms
vaariant, suggesting the state space can grow further. It becomes evident that
longer programs highly benefit from more intense noise seeding strategies.

Figure 3(b) shows the expected ordering of the average distance of inter-
leavings for each noise seeding strategy, however with the average distance not



OSCAR - A Java Noise Injection Framework 11

0 2,000 4,000
0

500

1,000

Number of Threads

R
un

T
im

e
(m

s)

(a) PrintID program.

0 2,000 4,000
0

2,000

4,000

6,000

Number of Threads

R
un

ti
m

e
(m

s)

(b) Account program.

Sleep (1–5ms) Sleep (1–25ms) Yield (1–10 times) Yield (1–50 times)
Sleep (1–10ms) Yield (1–5 times) Yield (1–25 times) Unnoised

Fig. 4: Average program run times (10 runs).

varying as much between as it did PrintID. Unlike PrintID, which is expected
to be executed linearly, when absent of noise, the Account program contains a
considerable amount of synchronized blocks, which highly raise the probability
of the occurrence of context switches.

While results are highly dependent of not only the tested program, but also
the test environment and configurations, making such comparisons unfruitful,
this effect can be attributed to the fact that there is a much longer trace, which
causes overall average differences in interleavings to be much higher. For the
Account program, the full trace for a given run is composed of 26 tracing points,
compared to PrintID’s 16 points. This means that the observable difference
of 4 points in the average distance in the Account program, between sleep and
unnoised runs, is still quite significant, when contextualised.

4.3 OSCAR Run Time Impact

Noise injection, by its nature, will always be expected to have a considerable
impact on the overall run time of a program. From Figure 4 it is possible to assess
the impact of OSCAR’s noise injection into the PrintID and Account programs.
The results show that the run time when using sleep-based heuristics increases
exponentially, in relation to the number of threads and noising locations, while
for yield -based heuristics that increase is linear. Since PrintID only contains
one noising location, the overall impact of sleep noising is minimal, while for
the Account progrm it becomes relevant. As such, the yield primitive, though
shown to be a worse performer, may become a better option when testing very
complex programs under time constraints.

In summary, the evaluation of OSCAR with the PrintID and Account pro-
grams demonstrate that OSCAR is a viable and effective tool for exploring the
state space of Java programs, through the use of noise injection. Additionally,



12 F. de Luna et al.

the yield primitive, although demonstrably worse than sleep at triggering new
interleavings, can be used in scenarios where time constraints exist.

5 Related Work

ConTest [3] is the most well known noise injection framework and, consequently,
the main inspiration for OSCAR. The framework relies on source code instru-
mentation, which although more simple, is by definition more limited than OS-
CAR’s bytecode instrumentation. ConTest breaks down every assignment in the
program into two separate concurrent events—before and after—, allowing con-
trol of the program to be passed on to ConTest when assignments are made.
This approach is somewhat similar OSCAR’s, which inserts calls to the con-
troller in noising regions. Like OSCAR, ConTest allows for noise injection before
and/or after concurrency events [5]. Unlike the current version of OSCAR, Con-
Test includes a replay component based on an adapted version of the DejaVu [2]
deterministic replay algorithm. This is an important mechanism that can allow
a tester to accurately reproduce the exact program trace that led to the concur-
rent error. The current OSCAR trace mechanism, could be further adapted to
implement such a feature as well.

Lastly, ConTest also has a fault detection mechanism, which checks for the
program’s correctness on a given test. Since OSCAR already captures program
exceptions and system exits, it would be feasible to implement such a mechanism.

ANaConDA [6] is another notable noise injection framework for concurrent
C/C++ software. Its designers mention that ANaConDA was partly inspired by
ConTest and, as such, may be viewed as its C/C++ counterpart, albeit resorting
instrumenting the binary code dynamically instead of the source code statically,
allowing for a generic solution that can be used for any piece of software that
is compiled to binary code. However, this approach is not compatible with Java
programs, which OSCAR intends to target.

6 Conclusion

In this paper, we have presented OSCAR, a new noise injection framework for
the Java programming language. We have evaluated that programs which had
noise injected into their routines by OSCAR were verified to consistently gener-
ate more interleavings. Furthermore, OSCAR also generated interleavings that
were consistently more different from each other. The results show that OSCAR
can be reliably used as a noise injection framework for the development of er-
ror detection or coverage analysis tools. Additionally, we found that the yield
primitive, although less effective is more efficient and can be a valid option in
time-constrained scenarios.

In the future, we plan to develop a more accurate representation of interleav-
ing distance. The Levenshtein method, although valid, is not ideal, as it only
examines the difference between the strings that represent the interleaving and
does not take into account the actual differences in interleavings themselves,



OSCAR - A Java Noise Injection Framework 13

such as the distance between statements. Additionally, it would be interesting
to have a method which gives more weight not only to how more “distant” in
the trace any given modifications is, but also to how many modifications are
done in total. This means an interleaving distance of 4, for example, should be
more than simply twice as significant than a distance of 2. Another possible
future improvement to OSCAR, would be to add a replay mechanism, allowing
specific interleavings to be reexecuted. This feature is highly desirable, as it of-
fers a means to simulate determinism and check if a fix for an error found for
an incorrect interleaving has effectively made that same error disappear, thus
providing a means for avoiding the dreaded “heisenbugs”.

References

1. Artho, C., Havelund, K., and Biere, A.: High-level data races. Software Testing,
Verification and Reliability 13(4), 207–227 (2003)

2. Choi, J.-D., and Srinivasan, H.: Deterministic replay of Java multithreaded appli-
cations. In: SPDT ’98. ACM Press (1998). doi: 10.1145/281035.281041

3. Edelstein, O., Farchi, E., Nir, Y., Ratsaby, G., and Ur, S.: Multithreaded Java
program test generation. In: ACM Press (2001). doi: 10.1145/376656.376848

4. Eytani, Y., Farchi, E., and Ben-Asher, Y.: Heuristics for finding concurrent bugs.
In: Proceedings International Parallel and Distributed Processing Symposium.
IEEE Comput. Soc (2003). doi: 10.1109/ipdps.2003.1213514

5. Fiedor, J., Hrubá, V., Křena, B., Letko, Z., Ur, S., and Vojnar, T.: Advances in
noise-based testing of concurrent software. 25(3), 272–309 (2014). doi: 10.1002/
stvr.1546

6. Fiedor, J., and Vojnar, T.: ANaConDA: A Framework for Analysing Multi-threaded
C/C++ Programs on the Binary Level. In: Qadeer, S., and Tasiran, S. (eds.) Run-
time Verification, pp. 35–41. Springer Berlin Heidelberg, Berlin, Heidelberg (2013)

7. Fiedor, J., and Vojnar, T.: Noise-based testing and analysis of multi-threaded
C/C++ programs on the binary level. In: ACM Press (2012). doi: 10 . 1145 /
2338967.2336813

8. Gait, J.: A probe effect in concurrent programs. 16(3), 225–233 (1986). doi: 10.
1002/spe.4380160304

9. Hrubá, V., Křena, B., Letko, Z., Ur, S., and Vojnar, T.: Testing of Concurrent Pro-
grams Using Genetic Algorithms. In: Search Based Software Engineering, pp. 152–
167. Springer Berlin Heidelberg (2012). doi: 10.1007/978-3-642-33119-0_12

10. Krena, B., Letko, Z., Tzoref, R., Ur, S., and Vojnar, T.: Healing data races on-the-
fly. In: ACM Workshop on Parallel and Distributed Systems: Testing and Debug-
ging, pp. 54–64 (2007)

11. Letko, Z.: Analysis and Testing of Concurrent Programs. Information Sciences &
Technologies: Bulletin of the ACM Slovakia 5(3) (2013)

12. Letko, Z.: Analysis and Sophisticated Testing of Concurrent Programs. (2010)
13. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and

reversals. In: Soviet physics doklady, pp. 707–710 (1966)
14. Vallée-Rai, R., Co, P., Gagnon, E., Hendren, L., Lam, P., and Sundaresan, V.:

Soot. In: CASCON ’10. ACM Press (2010). doi: 10.1145/1925805.1925818

https://doi.org/10.1145/281035.281041
https://doi.org/10.1145/376656.376848
https://doi.org/10.1109/ipdps.2003.1213514
https://doi.org/10.1002/stvr.1546
https://doi.org/10.1002/stvr.1546
https://doi.org/10.1145/2338967.2336813
https://doi.org/10.1145/2338967.2336813
https://doi.org/10.1002/spe.4380160304
https://doi.org/10.1002/spe.4380160304
https://doi.org/10.1007/978-3-642-33119-0_12
https://doi.org/10.1145/1925805.1925818


14 F. de Luna et al.

15. Visser, W., Pǎsǎreanu, C.S., and Khurshid, S.: Test Input Generation with Java
PathFinder. SIGSOFT Softw. Eng. Notes 29(4), 97–107 (2004). doi: 10.1145/
1013886.1007526

https://doi.org/10.1145/1013886.1007526
https://doi.org/10.1145/1013886.1007526

	OSCAR - A Java Noise Injection Framework

