
Empowering a Relational Database with LSD:

Lazy State Determination⋆

Thales Parreira1, Tiago M. Vale1 , Ricardo J. Dias1 , and João M.
Lourenço1

FCT�NOVA University Lisbon & NOVA LINCS, Portugal
tv.parreira@campus.fct.unl.pt joao.lourenco@fct.unl.pt

Abstract. Computing systems providing services to the �nal user, more
often than not, involve some type of interaction with a database. It is
of utmost importance that such systems are responsive, automatically
adapting to di�erent types of workload. When this does not happen, the
service latency increases with considerable impact in the provided quality
of service. In this paper, we propose the lazy evaluation of database
SQL queries (using Futures/Promises and JDBC

1) by empowering a
relational database with Lazy State Determination (LSD). We observed
that the use of Futures and LSD can improve the stability of the system.

Keywords: Concurrency · Relational Databases · JDBC · Futures/Promises
· Concurrency Control.

1 Introduction

Computer systems are ubiquitous is today's world and Relational Database Man-
agement Systems (RDBMS) still remain one of the most popular database sys-
tems. These systems may have to process millions of operations in milliseconds
with databases taking a massive role in the whole systems' throughput. Hence, it
should be clear that e�cient query processing in these databases is needed and,
consequently, fast execution of transactions is a highly desirable property of any
modern system. It is with this in mind that we propose empowering a relational
database with Lazy State Determination (LSD) [5] by using Futures/Promises
and JDBC. In the following sections we detail the underlying issue we will focus
and how using futures should improve a database performance.

1.1 Problem

The transaction abstraction in RDBMS is ACID abstraction, where transactions
appear to execute atomically and without interference, despite being executed

⋆ Supported by Research Grants PTDC/CCI-COM/32456/2017 & LISBOA-01-0145-
FEDER-032456.

1 https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

https://orcid.org/0000-0002-8667-887X
https://orcid.org/0000-0002-6887-2361
https://orcid.org/0000-0002-8495-6442
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

2 T. Parreira et al.

concurrently. A transaction that involves transferring money from one bank ac-
count to another will most likely involve multiple records that do not get updated
atomically, even though the ACID abstraction entails that. Correctness here is
guaranteed by the Concurrency Control (CC) system in the database, that al-
lows transactions to run in parallel without them being aware of each other. The
CC however, when met with high contention, loses performance, mainly due to
the fact that con�icting transactions tend to execute sequentially, worsening the
resource usage and lowering the system's throughput.

Typical CC systems can only make conservative assumptions on what a trans-
action is doing. If two transactions con�ict, they will most likely need their
execution to be synchronized. For example, two transactions that increase the
available balance of the same bank account would con�ict because they would
be writing to the same database tuple. To control such scenario, transactions are
required to expose their concrete state to other transactions which, in the end,
leaves them open to con�ict. This, however, needs not always be the case as,
provided that the aggregate e�ects of both transactions are preserved, we could
view the transactions as non-con�icting.

 begin
 v ← read(stock)
 if v > 0
 v ← v - 1
 write(stock, v)
 end
 commit

(a) Transaction that updates the stock by
decrementing it a certain amount.

 begin
 v ← 50
 write(stock, v)
 commit

(b) Transaction that updates the
stock value to 50.

Fig. 1: Two transactions and their windows represented by the red arrows.

To better understanding this issue, we may think about a transaction as
having an execution window, which starts when the transaction makes its �rst
query or update to the database and ends when the transaction commits the
transaction. (see Figure 1). The con�ict window between two transactions is de-
�ned by the intersection of their execution windows. There is a possible con�ict
when such con�ict window is not empty. From this observation results that, if
we decrease the size of a transaction windows we also decrease the probability
of a non-null con�icting window, which will increase the probability of success-
ful commits and improve database throughput. It is based on this insight that
we propose the lazy evaluation of database SQL queries levering the insights
of Vale [5] using futures and JDBC.

Empowering a Relational Database with LSD: Lazy State Determination 3

2 Lazy State Determination

Lazy State Determination (LSD) [5] presents itself as an innovative mean to in-
creasing concurrency of transactions. The LSD is an API for conveying seman-
tics to the database while improving concurrency and ensuring serializability of
operations. For this, LSD adapts the traditional transactional API to be lazily
evaluated and changes its operations to return futures instead of concrete values.
Each future is then resolved, one by one, at commit time, which consequently
reduces the con�ict window of transactions and increases the system's through-
put. The commit time in the end should not be the same, as any computation
the client needed to make before commit, will long have been computed.

2.1 Futures

A future, also known as promise, is an abstraction used to refer to a proxy of a
value that, as the name implies, will only be available at a future time. In other
words, futures encapsulate asynchronous tasks and their result. In doing so, they
provide means for deferring computations, allowing programs to create a future
and only retrieving its result when necessary. It is based on this abstraction that
LSD transactions execute.

A key insight from LSD is that, in general, transactions do not need to
know the concrete state in which the database is for executing transactions,
they only need to provide semantics on how to execute the transaction. Hence,
LSD operations can be de�ned as something to be eventually executed, i.e., a
future. In particular, LSD defers execution for commit time in order to allow for
more concurrency.

In the end, what happens is that the amount of time transactions need to be
in isolation gets reduced. Isolation is still ensured at commit time.

2.2 The LSD API

The traditional transactional API is evaluated immediately and so, returns con-
crete results, which is not compatible with LSD requirements of returning lazy
objects, i.e., futures. This forces LSD to have its own API for transactions. Hence,
clients that wish to reap the bene�ts of lazy evaluation must use a LSD speci�c
API. It is worth noting that if the client still needs to use the traditional API,
the bene�ts of delayed execution and short isolation periods will not be present
in such operations.

LSD operations are implemented as follows:

READ(key)→ ◻ � Returns the future ◻, which is an opaque representation of
the actual value held by key. From the database perspective the future is
represented by some function to obtain the value. From the client perspective
it only knows the opaque representation of the future. Hence, other interac-
tions with the database that need value in ◻ need to use it as is, and it is
up to the database to decide when and how to resolve it. The database on
the other hand promises to lazily resolve it when necessary.

4 T. Parreira et al.

READ(∆)→ ◻ � Returns a future ◻ held by future key ∆. This operation is
similar to READ(key)→ ◻, however, in this case, ∆ future value needs to be
resolved before returning future ◻. This is necessary to avoid dealing with
�futures of futures�.

WRITE(key,◻) � Writes the future value ◻ to value held by key. From the
application perspective, it is as if the operation has executed in the database
and the value has been updated. On the other hand, from the database
perspective this is an indication of an operation to be eventually executed,
not necessarily an immediate execution. The value of ◻ will only be resolved
in the commit phase and, hence, the write operation will only take place at
commit time as well.

WRITE(∆,◻) � Writes the future value ◻ to the value held by future key ∆.
This operation is similar to WRITE(key,◻), however in this case the key is
also a future, and, consequently, ∆ needs to also be resolved in the commit
phase (before ◻).

IS-TRUE(◻)→boolean � Conditional check for future ◻. This operation allows
transactions to operate based on abstract database states. As was the case
for other LSD transactions, it does not expose the database state to the
transaction. The idea here is to expose an abstract state instead of the
concrete state. This allows for more concurrency and safeguards isolation
because this operation is only executed in the commit phase, after ◻ is
resolved.

COMMIT→boolean � Resolves all futures generated along the transaction exe-
cution and, if the transaction validation succeeds, commits to the database.

3 JDBC API

The JDBC is an API that allows Java applications to interact with database
systems. The API de�nes a set of Java interfaces that encapsulate database
functionality such as executing database queries, updating or inserting data,
or even managing con�guration information. To any applications that needs
to interact with the database, only this high level interface is provided, while
internally the speci�c database driver performs database-speci�c translations
from the high-level interface to the database system. This separation (high-level
JDBC API vs. database driver) makes the JDBC API vendor-agnostic, allowing
multiple databases to be accessible via a single common interface, and even a
single application.

The most relevant interfaces and operations of the JDBC API are the fol-
lowing:

DriverManager � Used by the application to create and retrieve the desired
JDBC driver.

Driver � Used by the application to create connections to a database.
Connection � This interface represents the connection to a database.

prepareStatement(sql: String): PreparedStatement �Creates a query
object represented by an instance of a PreparedStatement.

Empowering a Relational Database with LSD: Lazy State Determination 5

PreparedStatement �Represents a SQL statement that can be used to execute
some operation in the database. It holds parameters that are to be used in
the query and also has the ability to batch multiple update/insert queries
which result in a single hop to the database.
setInt(parameterIndex: Int, value: Int) � Example of a parameter

setter in the PreparedStatement API. In this speci�c example the op-
eration adds an integer parameter to the PreparedStatement in the
position parameterIndex. This parameter is then added to SQL state-
ment when executing the statement in the database. Other setters exist
for di�erent types of data.

executeQuery() �Executes a query in the database and returns a ResultSet
with the query results.

executeUpdate() � Executes an update or insert in the database and re-
turns a integer representing the result of the operation.

ResultSet � Representation of the results that are returned by the database
on a SQL query to the database. The results are represented in tabular form
with a cursor position maintained pointed to the current row data.
getInt(columnLabel: String): Int � Example of a value getter from

the ResultSet. In this speci�c example the operation returns the cur-
rently positioned item in the ResultSet from the column with label
columnLabel. Other getters exist for di�erent types of data.

The use of this interface enables to execute operations in the database and
process its results. Listing 1.1 has an example of a transaction that decrements
the stock number of an item using JDBC in Kotlin 2. The �rst step (line 1)
is to create a connection using the DriverManager, which internally uses the
database speci�c Driver to create the connection. The connection is then used
to create a PreparedStatement (lines 2�4) that is used to retrieve the stock
of item with id of 1. The PreparedStatement is then executed (line 6) to get
the stock value via a ResultSet. The ResultSet is then used as a parameter
to a �nal update query that decrements the stock value of item with id of 1
(lines 8�14).

Listing 1.1: Transaction for update the stock number of item 1 in the a database
using JDBC API.

1 v a l conne c t i on = Dr iverManager
2 . g e tConnec t i on (" jdbc : postgresql :// localhost / database ")
3 v a l s tockSta tement = connec t i on . p r epa r eS ta t ement (" SELECT stock
4 FROM items
5 WHERE id = 1 FOR UPDATE ")
6

7 v a l r e s u l t S e t = nex t I dS ta t ement . executeQuery ()
8

9 v a l updateStock = connec t i on . p r epa r eS ta t ement (" UPDATE items
10 SET stock = ? - 1
11 WHERE id = 1")
12

13 updateStock . s e t I n t (1 , r e s u l t S e t . g e t I n t (1))
14

2 https://kotlinlang.org/

https://kotlinlang.org/

6 T. Parreira et al.

15 updateStock . executeUpdate ()
16

17 conne c t i on . commit ()

4 JDBC on LSD

Empowering the database with lazy evaluation requires changes to the JDBC
API, such as, needing to understand futures, working with future parameters
and, �nally, knowing how and when to resolve the future (at commit time). This
means that the previously presented interface must change, namely, the Driver
has to be re-written to know how to support the creation of LSD connections;
the Connection needs to change to hold futures and at the same time resolve
them, one by one, at commit time; the PreparedStatement must know how to
resolve its future parameters and at the same time know to resolve itself; and
the ResultSet must be prepared to return future values.

We aimed at enabling all SQL operations supported by JDBC. To demon-
strated that, listing 1.1 and listing 1.2 present the same transaction with in
JDBC and JDBC with LSD. Over the course of the next sections we will go into
more detail over each of the steps of the example, but when comparing both
listings it is easy to see the ease of use of this API for programmers, as it is very
similar to the standard JDBC.

Listing 1.2: Transaction for updating the stock number of item 1 in a database,
using the LSD API.

1 v a l conne c t i on = Dr iverManager
2 . g e tConnec t i on (" jdbc : lsd .v2: postgresql :// localhost / database ")
3 v a l s tockSta tement = connec t i on . p r epa r eFu tu r eS ta t emen t (" SELECT stock
4 FROM items
5 WHERE id = 1 FOR UPDATE ")
6

7 v a l f u t u r eR e s u l t S e t = stockSta tement . execu teFutu r eQue ry ()
8

9 v a l updateStock = connec t i on . p r epa r eFu tu r eS ta t emen t (" UPDATE items
10 SET stock = ? - 1
11 WHERE id = 1")
12

13 v a l f u t u r eS t o c kVa l u e = f u t u r eR e s u l t S e t . g e t F u t u r e I n t (1)
14

15 updateStock . s e t F u t u r e I n t (1 , f u t u r eS t o c kVa l u e)
16

17 updateStock . execu teFutu reUpdate ()
18

19 conne c t i on . commit ()

4.1 Driver

The LSD JDBC driver is a database agnostic driver that proxies operations to
a backing real JDBC SQL driver. This means that every component of the LSD
driver leverages on a real database speci�c component, and frees the LSD driver
from re-implementing the database speci�c operations. The LSD driver intro-
duces the lsd.v2 directive into the scheme component of the database connec-
tion URI. The LSD driver after being selected by the DriverManager proceeds

Empowering a Relational Database with LSD: Lazy State Determination 7

to remove the lsd.v2 directive and then searches for a real backing driver. In the
Listing 1.2, the connection jdbc:lsd.v2:postgresql://localhost/database

is transformed into jdbc:postgresql://localhost/database, which is what
is then used internally by the LSD driver to create a real connection to the
database.

Futures To represent futures in the LSD API we propose the interface presented
in Listing 1.3. This interface has a single method resolve, which is responsible
for resolving and returning the actual value of the future.

The future representation in Listing 1.3 provides a clear interface for the
connection when interacting with the future, while also enabling the addition
of a new operation in the LSD connection for creating futures statements. New
interfaces in the LSD API rely heavily on this interface and are what enable the
driver to operate over a future state. The method resolve computes the actual
value of the future while dispose is used to clear any unnecessary info after
future resolution and database commit.

Listing 1.3: The representation of a Future in Kotlin.

1 i n t e r f a c e Future<T> {
2 fun r e s o l v e () : T
3 fun d i s p o s e ()
4 }

Connection Having a lazy state means that the connection must hold future
statements and must have the ability to resolve them. We achieved this by mod-
ifying the connection to create future statements, and store them local to the
connection. These statements are held for execution until the commit operation
itself is executed. When it is time to commit, the LSD connection will resolve
all futures it holds and only commit the transaction if it succeeds to resolve all
futures. If it fails to resolve any future, the transaction fails and aborts.

The operation for creating future statements is presented in Figure 2. The
parameter and return value are very similar to the original JDBC API, however,
a new data type is returned which implements the already presented future
interface (see Listing 1.3).

prepareStatement(sql: String): PreparedStatement

↓

prepareFutureStatement(sql: String): PreparedFutureStatement

Fig. 2: New prepareFutureStatement operation added to the LSD connection
for creating Future statements.

8 T. Parreira et al.

Future Statements Using parameters in statements is a major functionality of
the JDBC API. This is also supported by the new PreparedFutureStatement

interface. However, working with futures opens up the possibility that one of
such parameters is also a future. This is the exact case of line 14 of the List-
ing 1.2. Hence, it is important that the PreparedFutureStatement interface
also supports future parameters. This is achieved by introducing new parameter
setter operations that take a future interface as parameter. Figure 3 shows an
example of a setter for a future integer value.

setFutureInt(parameterIndex: Int, value: Future<Int>)

Fig. 3: Example of a new operation for setting future integer parameters in the
prepareFutureStatement interface. The actual value will only be resolved at
commit time.

Statement execution is no longer the same when working in the future state.
For this, we add two new methods to the PreparedFutureStatement that rep-
resent an eventual future execution. These methods are very similar to the ones
already existing in the JDBC API, and are as follows:

executeFutureQuery() � Creates a future internal to the statement that will
execute the JDBC operation executeQuery(). This operation returns a
FutureResultSet which contains a reference to the statement that created
it.

executeFutureUpdate() � Creates a future internal to the statement that will
execute the JDBC operation executeUpdate().

As previously mentioned, a PreparedFutureStatement is itself a future,
and because of that, must implement the resolve operation. In this case, the
resolve operation works by resolving any reference to a future parameter it
holds and then by executing the internal future that gets created when the
executeFutureQuery() or executeFutureUpdate is executed.

Future Results Since statements are no longer executed immediately, a re-
placement for the ResultSetmust exist. This is addressed by having a FutureResultSet.
This new interface has a reference to the PreparedFutureStatement that cre-
ated it and knows how to resolve the statement in order to return values from a
ResultSet.

The implementation of this new interface serves as a proxy to a real ResultSet
that has not yet been resolved. Standard operations of the ResultSet are no
longer supported and are replaced with operations that return future values that
comply with the interface presented in Listing 1.3. This is exactly what happens
in the line 12 of Listing 1.2. In that case, a future of an integer value is returned.
This is achieved by having the operation getFutureInt create a future that will
�rst resolve the PreparedFutureStatement, access the statement's ResultSet
and then return the actual value.

Empowering a Relational Database with LSD: Lazy State Determination 9

Conditions The code is not always as simple as the one presented in List-
ings 1.2. It may become necessary to execute some operation if a certain condi-
tion is meet. In the example of Listing 1.2, we may want to restock the item if
it is bellow a certain threshold. This is also supported by the LSD driver, and is
done with the LSD connection operation presented in Figure 4. The operation
gets a condition as parameter, with its syntax being the same as the one used to
the WHERE clause of any SQL statement. The return interface of the operation is
a FutureStatementCondition which is a representation of a real SQL statement
with only the condition in the statement and no table reference. This enables
us to leverage the expressiveness of SQL conditions without having to parse the
actual result.

isTrue(condition: String): FutureStatementCondition

Fig. 4: LSD driver support for conditions based on a future state of the database.

The FutureStatementCondition interface then has two operations, whenTrue
and whenFalse, where both get as parameter a future to be executed. One lim-
itation here is that it is not possible to execute any statement inside whenTrue
and whenFalse operations.

4.2 Other features

Similarly to the JDBC API, the LSD JDBC API also has support for batching
multiple inserts and updates into a single SQL statement to the database. This is
done by introducing two distinct operations in the PreparedFutureStatement

interface. The �rst operation is similar to the one existing in the JDBC, which
is addFutureBatch. This operation indicates to the statement that it should
hold the values of the current batch and that subsequent parameters are set to
not replace already present ones. The second operation is executeFutureBatch,
and is used to indicate to the PreparedFutureStatement that its internal future
action is to execute the operation executeBatch of the JDBC API.

5 Evaluation

In order to evaluate the work presented, we have executed two di�erent test
scenarios with the New-Order transaction present in the TPC-C-C benchmark.
We chose this transaction because of its ability to capture di�erent contention
levels. The �rst test scenario, represented the high contention case, was executed
using 10 terminals and 1 warehouse, while the second scenario, represented by
the low contention case, used 10 terminals and 10 warehouses. Both scenarios
were executed for 2 minutes, after which we analyzed the throughput and the
percentile 99 of the latency. We validated this work with 5 distributed nodes,
each with a 2xAMD Opteron 2376 CPU@2.30GHz, 16GB of RAM and 2x1Gbps

10 T. Parreira et al.

network connections. One node hosted a PostgreSQL database while the others
acted as clients.

0 20 40 60 80 100 120

Time (sec)

4000

6000

8000

10000

12000

14000

16000

tp
m

C

Requests (5 sec. rolling window)

LSD

BASE

0 20 40 60 80 100 120

Time (sec)

100

200

300

400

500

600

700

800

L
at

en
cy

(m
s)

P99th Latency (5 sec. rolling window)

LSD

BASE

Fig. 5: New-Order transaction benchmark between JDBC LSD (LSD) and Stan-
dard JDBC (BASE) for a scenario where contention is high, i.e., 1 warehouse
and 10 terminals. The left plot compares throughput over a 5 seconds rolling
window, while the right plot shows latency.

The high contention scenario is plotted in Figure 5. The plot shows us that
the throughput of the BASE (Standard JDBC) is not good when compared to
the throughput of LSD. This happens because, as contention increases, so do the
chances of con�icts and risk abort/rollbacks of transactions. The same happens
to the latency of BASE, which is a lot higher than the LSD. As for LSD, the
throughput is a lot higher, with some cases where it goes down, with this being
likely caused by cases where multiple transactions have their window intersected,
which is still possible to happen.

0 20 40 60 80 100 120

Time (sec)

2500

5000

7500

10000

12500

15000

17500

tp
m

C

Requests (5 sec. rolling window)

LSD

BASE

0 20 40 60 80 100 120

Time (sec)

200

400

600

800

1000

L
at

en
cy

(m
s)

P99th Latency (5 sec. rolling window)

LSD

BASE

Fig. 6: New-Order transaction benchmark between JDBC LSD (LSD) and Stan-
dard JDBC (BASE) for a scenario where contention is low, i.e., 10 warehouses
and 10 terminals. The left plot compares throughput over a 5 seconds rolling
window, while the right plot shows latency.

Empowering a Relational Database with LSD: Lazy State Determination 11

The low contention scenario is plotted is Figure 6. The plot show us a very
similar throughput between LSD and BASE, with both having spikes in through-
put around the same time. A similar behavior is seen in the latency, with it not
being stable for both LSD and BASE. At the time of writing of this article it
was not clear the reasons, hence, more study on this matter is required.

6 Related Work

Improving performance of database transactions has been an area of study for
a long time, with many approaches [2, 4, 8, 9, 1, 7, 6]. STRIFE [2] being one of
them, proposes to improve transactional performance by introducing transaction
analysis and aggregation to avoid data con�icts. This is achieved by aggregat-
ing committing transactions into batches. The batches are then partitioned into
con�ict-free and residual groups. The con�ict-free group is able to execute with-
out any concurrency control, while the residual group needs to execute using
concurrency control. Although its ability to improve performance of some trans-
actional workloads, in the end a new step for analysis and aggregation is added,
which can hamper performance of the database system.

Another approach is the one followed in the Salt database [8]. This database
stems from the idea that only a few transactions in�uence the total system
performance, and hence, only those need to be optimized. To optimize such
transactions, they propose the rewriting and partitioning of such transactions
into sub-transactions with a relaxed isolation between themselves. In the end,
this relaxed isolation adds di�erent types of locks that stem from the idea of
BASE [3] transactions. A limitation of this approach is that it requires a complex
analysis and rewriting of transactions by its developers in order to partition it
into sub-transactions, and in doing so, bugs may be introduced.

Callas [7] takes Salt database [8] a step further by automating the process of
partitioning transactions through static analysis and through iterative processes
for �nding good transaction decomposition, assigning groups and a speci�c CC
for each group. This, however, still adds a step of analysis which in the end can
hamper performance of the database system.

In the end, the work presented here takes the task of improving a database
system performance from a di�erent perspective, more speci�cally from the client
perspective, which di�ers from the approaches followed by most literature. In
doing so, it leaves open the possibility of even combining LSD with some work
in the literature.

7 Conclusion

This paper presents an implementation of the work of Vale [5]. Although di�erent
from the original work that implemented the lazy state directly in the database,
this work focused on bringing the lazy state to the client using JDBC with the
idea that it would make the use of futures more explicit to the client and at
the same time without requiring changes to the database implementations of

12 T. Parreira et al.

di�erent vendors, which in the end enables the lazy state to be used with other
solutions as mentioned in Section 6.

The driver was tested using the TPC-C benchmark and, achieved a greater
performance in the database in high contention scenarios and similar perfor-
mance in the low contention scenario. Although, the low contention scenario has
some shortcomings in the end we believe the work still relevant as it presents
an alternative approach with little overhead for a programmer implementing a
client. To deal with that we would do an evaluation of actual size of transaction
windows and the con�ict rate of transactions.

References

[1] Hyeontaek Lim, Michael Kaminsky, and David G. Andersen. �Cicada: De-
pendably Fast Multi-Core In-Memory Transactions�. In: Proceedings of the
2017 ACM International Conference on Management of Data. SIGMOD
'17. Chicago, Illinois, USA: Association for Computing Machinery, 2017,
pp. 21�35. isbn: 9781450341974. doi: 10.1145/3035918.3064015.

[2] Guna Prasaad, Alvin Cheung, and Dan Suciu. �Improving High Contention
OLTP Performance via Transaction Scheduling�. In: CoRR abs/1810.01997
(2018). arXiv: 1810.01997.

[3] Dan Pritchett. �Base an acid alternative�. In: Queue 6 (3 May 2008), pp. 48�
55. issn: 15427730. doi: 10.1145/1394127.1394128.

[4] Eduardo Subtil. �Lazy State Determination for SQL Databases�. MA thesis.
NOVA School of Science and Technology, 2021.

[5] Tiago Marques do Vale. �Executing requests concurrently in state machine
replication�. Nova School of Science and Technology, 2019. url: https:
//run.unl.pt/handle/10362/71218.

[6] Yingjun Wu et al. �An Empirical Evaluation of In-Memory Multi-Version
Concurrency Control�. In: Proc. VLDB Endow. 10.7 (Mar. 2017), pp. 781�
792. issn: 2150-8097. doi: 10.14778/3067421.3067427.

[7] Chao Xie et al. �High-performance ACID via modular concurrency control�.
In: SOSP 2015 - Proceedings of the 25th ACM Symposium on Operating Sys-

tems Principles (Oct. 2015), pp. 279�294. doi: 10.1145/2815400.2815430.
[8] Chao Xie et al. �Salt: Combining ACID and BASE in a Distributed Database�.

In: Proceedings of the 11th USENIX Conference on Operating Systems De-

sign and Implementation. OSDI'14. Broom�eld, CO: USENIX Association,
2014, pp. 495�509. isbn: 9781931971164.

[9] Xiangyao Yu et al. �TicToc: Time Traveling Optimistic Concurrency Con-
trol�. In: Proceedings of the 2016 International Conference on Manage-

ment of Data. SIGMOD '16. San Francisco, California, USA: Association
for Computing Machinery, 2016, pp. 1629�1642. isbn: 9781450335317. doi:
10.1145/2882903.2882935.

https://doi.org/10.1145/3035918.3064015
https://arxiv.org/abs/1810.01997
https://doi.org/10.1145/1394127.1394128
https://run.unl.pt/handle/10362/71218
https://run.unl.pt/handle/10362/71218
https://doi.org/10.14778/3067421.3067427
https://doi.org/10.1145/2815400.2815430
https://doi.org/10.1145/2882903.2882935

	Empowering a Relational Database with LSD: Lazy State Determination

