Antiproliferative Activities of Diimine-Based Mixed Ligand Copper(II) Complexes,
Kordestani, Nazanin, Rudbari {Hadi Amiri}, Fernandes {Alexandra R. }, Raposo {Luís R. }, Baptista {Pedro V. }, Ferreira {Daniela A. }, Bruno Giuseppe, Bella Giovanni, Scopelliti Rosario, Braun {Jason D. }, Herbert {David E. }, and Blacque Olivier
, ACS Combinatorial Science, feb, Volume 22, Number 2, p.89–99, (2020)
AbstractA series of Cu(diimine)(X-sal)(NO3) complexes, where the diimine is either 2,2′-bipyridine (bpy) or 1,10-phenanthroline (phen) and X-sal is a monoanionic halogenated salicylaldehyde (X = Cl, Br, I, or H), have been synthesized and characterized by elemental analysis and X-ray crystallography. Penta-coordinate geometries copper(II) were observed for all cases. The influence of the diimine coligands and different halogen atoms on the antiproliferative activities toward human cancer cell lines have been investigated. All Cu(II) complexes were able to induce a loss of A2780 ovarian carcinoma cell viability, with phen derivatives more active than bpy derivatives. In contrast, no in vitro antiproliferative effects were observed against the HCT116 colorectal cancer cell line. These cytotoxicity differences were not due to a different intracellular concentration of the complexes determined by inductively coupled plasma atomic emission spectroscopy. A small effect of different halogen substituents on the phenolic ring was observed, with X = Cl being the most highly active toward A2780 cells among the phen derivatives, while X = Br presented the lowest IC50 in A2780 cells for bpy analogs. Importantly, no reduction in normal primary fibroblasts cell viability was observed in the presence of bpy derivatives (IC50 > 40 μM). Mechanistically, complex 1 seems to induce a stronger apoptotic response with a higher increase in mitochondrial membrane depolarization and an increased level of intracellular reactive oxygen species (ROS) compared to complex 3. Together, these data and the low IC50 compared to cisplatin in A2780 ovarian carcinoma cell line demonstrate the potential of these bpy derivatives for further in vivo studies.
Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules,
Fernandes, {Alexandra R. }, c}a-Martins Inês Mendon{\c, Santos {Marino F. A. }, Raposo {Luís R. }, Mendes Rita, Marques Joana, Romão {Carlos C. }, Romão {Maria João}, Santos-Silva Teresa, and Baptista {Pedro V. }
, ACS Biomaterials Science and Engineering, feb, Volume 6, Number 2, p.1090–1101, (2020)
AbstractCO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles-CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.
Size-Dependent Biological Activities of Fluorescent Organosilane-Modified Zinc Oxide Nanoparticles,
s}il{\u a}, Mariana Bu{\c, a}b{\u a}caru Aurel T. {\u, s}sat Viorica Mu{\c, Vasile {Bogdan S}tefan} {\c, Nea{\c s}u {Ionela Andreea}, Pinheiro Teresa, Roma-Rodrigues Catarina, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Matos {António Pedro}, and Marques {Fernanda Marujo}
, Journal of biomedical nanotechnology, feb, Volume 16, Number 2, p.137–152, (2020)
AbstractSurface modification of zinc oxide nanoparticles (ZnO NPs) is a strategy to tune their biocompatibility. Herein we report on the synthesis of a series of fluorescent ZnO NPs modified with 2-10% (3-glycidyloxypropyl)trimethoxysilane (GPTMS) to investigate the fluorescence properties and to explore their applications in microbiology and biomedicine. The obtained ZnO NPs were characterized by X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM) and Fourier transform infrared spectroscopy (FTIR). Size reduction occurred from ca. 13 nm in unmodified ZnO to 3-4 nm in silane-modified samples and fluorescence spectra showed size-dependent variation of the photoemission bands' intensity. The antibacterial and cytotoxic activities were investigated on Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria, and in ovarian (A2780) and prostate (PC3) cancer cells by tetrazolium/formazan-based methods. The antibacterial effect was higher for E. coli than S. aureus, while the cytotoxic activity was similar for both cancer cells and varied with the particle size. Cell death by apoptosis, and/or necrosis versus autophagy, were explored by flow cytometry using an Annexin V based-method and transmission electron microscopy (TEM). The main mechanism of ZnO NPs toxicity may involve the generation of reactive oxygen species (ROS) and the induction of apoptosis or autophagy. This work revealed the potential utility of GPTMS-modified ZnO NPs in the treatment of bacterial infection and cancer.
Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics,
Ferreira, Daniela, Fontinha David, Martins Catarina, Pires David, Fernandes {Alexandra R. }, and Baptista {Pedro V. }
, Molecules, aug, Volume 25, Number 15, (2020)
AbstractCancer remains a complex medical challenge and one of the leading causes of death worldwide. Nanomedicines have been proposed as innovative platforms to tackle these complex diseases, where the combination of several treatment strategies might enhance therapy success. Among these nanomedicines, nanoparticle mediated delivery of nucleic acids has been put forward as key instrument to modulate gene expression, be it targeted gene silencing, interference RNA mechanisms and/or gene edition. These novel delivery systems have strongly relied on nanoparticles and, in particular, gold nanoparticles (AuNPs) have paved the way for efficient delivery systems due to the possibility to fine-tune their size, shape and surface properties, coupled to the ease of functionalization with different biomolecules. Herein, we shall address the different molecular tools for modulation of expression of oncogenes and tumor suppressor genes and discuss the state-of-the-art of AuNP functionalization for nucleic acid delivery both in vitro and in vivo models. Furthermore, we shall highlight the clinical applications of these spherical AuNP based conjugates for gene delivery, current challenges, and future perspectives in nanomedicine.
RNA Quantification Using Noble Metal Nanoprobes: Simultaneous Identification of Several Different mRNA Targets Using Color Multiplexing and Application to Chronic Myeloid Leukemia Diagnostics,
Baptista, {Pedro Viana}
, Nanoparticles in Biology and Medicine, United States, p.251–268, (2020)
AbstractNanotechnology provides new tools for gene expression analysis that allow for sensitive and specific characterization of prognostic signatures related to cancer. Cancer is a complex disease where multiple gene loci contribute to the phenotype. The ability to simultaneously monitor differential expression originating from each locus allows for a more accurate indication into the degree of cancerous activity than either locus alone. Metal nanoparticles have been widely used as labels for in vitro identification and quantification of target sequences. Here we describe the synthesis of nanoparticles with different noble metal compositions in an alloy format that are then functionalized with thiol-modified ssDNA (nanoprobes). We also show how such nanoprobes are used in a non-cross-linking colorimetric method for the direct detection and quantification of specific mRNA targets, without the need for enzymatic amplification or reverse-transcription steps. The different metals in the alloy provide for distinct absorption spectra due to their characteristic plasmon resonance peaks. The color multiplexing allows for simultaneous identification of different mRNA targets involved in cancer development. A comparison of the absorption spectra of the nanoprobe mixtures taken before and after induced aggregation of metal nanoparticles allows to both identify and quantify each mRNA target. We describe the use of gold and gold–silver alloy nanoprobes for the development of the non-cross-linking method to detect a specific BCR-ABL fusion gene (e.g., e1a2 and e14a2) mRNA target associated with chronic myeloid leukemia (CML) using 10 ng/μL of unamplified total human RNA. Additionally, we demonstrate the use of this approach for the direct diagnostics of CML. This simple methodology takes less than 50 min to complete after total RNA extraction with comparable specificity and sensitivity to the more commonly used methods.