Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine,
Mendo, {Ana Soraia}, Figueiredo Sara, Roma-Rodrigues Catarina, Videira {Paula A. }, Ma Zhen, Diniz Mario, Larguinho Miguel, Costa P. M., Lima {Joao C. }, Pombeiro {Armando J. L. }, Baptista {Pedro V. }, and Fernandes {Alexandra R. }
, JBIC Journal of Biological Inorganic Chemistry, sep, Volume 20, Number 6, p.935–948, (2015)
AbstractSeveral copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)(2)}L](NO3)(2) incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.
Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine's tool Box,
Martins, Pedro, Jesus Joao, Santos Sofia, Raposo {Luis R. }, Roma-Rodrigues Catarina, Baptista {Pedro Miguel Ribeiro Viana}, and de Fernandes {Maria Alexandra Núncio Carvalho Ramos}
, Molecules, sep, Volume 20, Number 9, p.16852–16891, (2015)
AbstractThe majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.
Mobile based gold nanoprobe TB diagnostics for point-of-need,
Veigas, B., Fortunato E., and Baptista {P. V. }
, Mobile Health Technologies: Methods and Protocols, jan, Volume Part 1, United States, p.41–56, (2015)
AbstractNanotechnology based diagnostics has provided improved tools for pathogen detection and sensitive and specific characterization of antibiotic resistance signatures. Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis Complex (MTBC) and, according to the World Health Organization, is one of the most serious infectious diseases in the world. Recent advances in molecular diagnostics of TB have improved both the detection time and sensitivity but they still require specialized technical personnel and cumbersome laboratory equipment. Diagnostics at point-of-need is crucial to TB control as it may provide rapid identification of pathogen together with the resistance profile of TB strains, originated from single nucleotide polymorphisms (SNPs) in different loci , allowing for a more accurate indication of the adequate therapy.Gold nanoparticles have been widely used in molecular diagnostics platforms. Here, we describe the use of gold nanoprobes (oligonucleotide functionalized gold nanoparticles) to be used in a non-crosslinking colorimetric method for the direct detection of specific DNA targets. Due to the remarkable optical properties of gold nanoparticles, this detection system provides colorimetric detection of the pathogen together with the potential of identification of several single nucleotide polymorphisms (SNPs) involved in TB resistance to antibiotics. For point-of-need use, we adapted this strategy to a low-cost mobile scheme using a paper based revelation platform and where the spectral signature is transposed to RGB data via a smartphone device. This way, identification of pathogen and characterization of resistance signatures is achieved at point-of-need.