Publications

Sort by: Type [ Year  (Desc)]
2015
POxylated Polyurea Dendrimers: Smart Core-Shell Vectors with IC50 Lowering Capacity, Restani, {Rita B. }, Conde João, Pires {Rita F. }, Martins Pedro, Fernandes {Alexandra R. }, Baptista {Pedro V. }, Bonifacio {Vasco D. B. }, and Aguiar-Ricardo Ana , Macromolecular Bioscience, aug, Volume 15, Number 8, p.1045–1051, (2015) Abstract

The design and preparation of highly efficient drug delivery platforms using green methodologies is at the forefront of nanotherapeutics research. POxylated polyurea dendrimers are efficiently synthesized using a supercritical-assisted polymerization in carbon dioxide. These fluorescent, pH-responsive and water-soluble core-shell smart nanocarriers show low toxicity in terms of cell viability and absence of glutathione depletion, two of the major side effect limitations of current vectors. The materials are also found to act as good transfection agents, through a mechanism involving an endosomal pathway, being able to reduce 100-fold the IC50 of paclitaxel.

GOLD NANOPROBES IN THE DIAGNOSTIC OF CHRONIC MYELOID LEUKEMIA: DETECTION OF THE E14A2 BCR-ABL TRANSCRIPT DIRECTLY IN RNA SAMPLES, Vinhas, Raquel, Correia C., Ribeiro P., Lourenco A., Sousa A., Fernandes A., and Baptista P. , Leukemia research, apr, Volume 39, p.S90–S90, (2015) Abstract
n/a
2014
Gold-nanobeacons for gene therapy: Evaluation of genotoxicity, cell toxicity and proteome profiling analysis, Conde, João, Larguinho Miguel, Cordeiro Ana, Raposo {Luís R. }, Costa {Pedro M. }, Santos Susana, Diniz {Mário S. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Nanotoxicology, aug, Volume 8, Number 5, p.521–532, (2014) Abstract

Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3′-Cy3 and 5′-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2- Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.

Dual-color control of nucleotide polymerization sensed by a fluorescence actuator, Reimão-Pinto, {Madalena M. }, Cordeiro Ana, Almeida Carina, Pinheiro {Andre V. }, Moro Artur, Lima {João C. }, and Baptista Pedro , Photochemical & Photobiological Sciences, Volume 13, Number 5, p.751–756, (2014) Abstract

Spatial and temporal control of molecular mechanisms can be achieved using photolabile bonds that connect biomolecules to protective caging groups, which can be cleaved upon irradiation of a specific wavelength, releasing the biomolecule ready-to-use. Here we apply and improve a previously reported strategy to tightly control in vitro transcription reactions. The strategy involves two caging molecules that block both ATP and GTP nucleotides. Additionally, we designed a molecular beacon complementary to the synthesized mRNA to infer its presence through a light signal. Upon release of both nucleotides through a specific monochromatic light (390 and 325 nm) we attain a light signal indicative of a successful in vitro transcription reaction. Similarly, in the absence of irradiation, no intense fluorescence signal was obtained. We believe this strategy could further be applied to DNA synthesis or the development of logic gates.

Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells, Roma-Rodrigues, Catarina, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, and Baptista Pedro , BioMed Research International, (2014) Abstract

Cancer development is amultistep process in which exosomes play important roles. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. The major role of exosomes seems to be the transport of bioactive molecules between cells. Depending on the cell of origin, exosomes are implicated in the regulation of several cellular events, with phenotypic consequences in recipient cells. Cancer derived exosomes (CCEs) are important players in the formation of the tumour microenvironment by (i) enabling the escape of tumour cells to immunological system and help initiating the inflammatory response; (ii) acting in the differentiation of fibroblasts and mesenchymal cells into myofibroblasts; (iii) triggering the angiogenic process; and (iv) enhancing the metastatic evolution of the tumour by promoting epithelial to mesenchymal transformation of tumour cells and by preparing the tumour niche in the new anatomical location. Since the finding that exosomes content resembles that of the cell of origin, they may be regarded as suitable biomarkers for cancer diagnosis, allowing for diagnosis and prognosis via a minimal invasive procedure. Exosome involvement in cancer may open new avenues regarding therapeutics, such as vectors for targeted drug delivery.

Polyurea dendrimer for efficient cytosolic siRNA delivery, Restani, {Rita B. }, Conde João, Baptista {Pedro V. }, Cidade {Maria Teresa}, Bragan{\c c}a {Ana M. }, Morgado Jorge, Correia {Ilídio J. }, Aguiar-Ricardo Ana, and Bonifácio {Vasco D. B. } , RSC Advances, Volume 4, Number 97, p.54872–54878, (2014) Abstract

The design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are 'smart' biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, they are able to automatically and reversibly transform their conformation in response to pH stimulus. Here, we show that PURE-G4 is a useful gene silencing platform showing no cellular toxicity. As a proof of concept we investigated the PURE-G4-siRNA dendriplex, which was shown to be an attractive platform with high transfection efficacy. The simplicity associated with the complexation of siRNA with polyurea dendrimers makes them a powerful tool for efficient cytosolic siRNA delivery.

2013
Gold-Nanobeacons as a theranostic system for the detection and inhibition of specific genes, Conde, Joao, Rosa João, and Baptista Pedro , Protocol Exchange, nov, (2013) Abstract

This protocol describes the synthesis and detailed calibration of a gold nanoparticle-based nanobeacon (Au-nanobeacon) as an innovative theranostic approach for detection and inhibition of sequence-specific DNA and RNA for in vitro and ex vivo applications. Under hairpin configuration, proximity to gold nanoparticles leads to fluorescence quenching; hybridization to a complementary target restores fluorescence emission due to the gold nanobeacons’ conformational reorganization that causes the fluorophore and the AuNP to part from each other. This concept can easily be extended and adapted to assist the in vitro evaluation of silencing potential of a given sequence to be later used for ex vivo gene silencing and RNAi approaches, with the ability to monitor real-time gene delivery action. The time range for the entire protocol is  8 days, including synthesis, functionalization and calibration of Au-nanobeacons, RNAi and gene silencing assays.

Gold-nanobeacons for simultaneous gene specific silencing and intracellular tracking of the silencing events, Conde, João, Rosa João, {de la Fuente} {Jesús M. }, and Baptista {Pedro V. } , Biomaterials, mar, Volume 34, Number 10, p.2516–2523, (2013) Abstract

The potential of a single molecular nanoconjugate to intersect all RNA pathways: from gene specific downregulation to silencing the silencers, i.e. siRNA and miRNA pathways, is demonstrated. Gold-nanobeacons are capable of efficiently silencing single gene expression, exogenous siRNA and endogenous miRNAs while yielding a quantifiable fluorescence signal directly proportional to the level of silencing. The silencing potential is comparable to that of traditional siRNA but the same nanoconjugates structure is also capable of reversing the effect of an exogenous siRNA. We further demonstrate the Gold-nanobeacons' efficiency at targeting and silencing miR-21, an endogenous miRNA involved in cancer development, which could become a valid nanotheranostics approach. Again, expression of miR-21 was inhibited with concomitant increase of the Au-nanobeacons' fluorescence that can be used to assess the silencing effect. This way, a single nanostructure can be used to intersect all RNA regulatory pathways while allowing for direct assessment of effective silencing and cell localization via a quantifiable fluorescence signal, making cancer nanotheranostics possible.

Nanoparticle drug delivery systems: Recent patents and applications in nanomedicine, Martins, Pedro, Rosa Daniela, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Recent Patents on Nanomedicine, Volume 3, Number 2, p.105–118, (2013) Abstract

Traditional methods of drug delivery present several drawbacks, mainly due to off-target effects that may originate severe side and toxic effect to healthy tissues. Parallel to the development of novel more effective drugs, particular effort has been dedicated to develop and optimize drug delivery vehicles capable of specifically targeting the required tissue/organ and to deliver the cargo only where and when it is needed. New drug delivery systems based on nanoscale devices showing new and improved pharmacokinetic and pharmacodynamics properties like enhanced bioavailability, high drug loading or systemic stability have surged in the past decade as promising solutions to the required therapeutic efficacy. Amongst these nanoscale vectors, nanoparticles for drug delivery, such as polymeric, lipidbased, ceramic or metallic nanoparticles, have been at the forefront of pharmaceutical development. The interest in nanomedicine for treatment and diagnosis is clearly reflected on the increasing number of publications and issued patents every year. Here, we provide a broad overview of novel nanoparticle based drug delivery systems, ranging from polymeric systems to metal nanoparticles, while simultaneously listing the most relevant related patents.

2012
Gold-nanobeacons for real-time monitoring of RNA synthesis, Rosa, João, Conde João, {de la Fuente} {Jesus M. }, Lima {João C. }, and Baptista {Pedro V. } , Biosensors & Bioelectronics, jun, Volume 36, Number 1, p.161–167, (2012) Abstract

Measuring RNA synthesis and, when required, the level of inhibition, is crucial towards the development of practical strategies to evaluate silencing efficiency of gene silencing approaches. We developed a direct method to follow RNA synthesis in real time based on gold nanoparticles (AuNPs) functionalized with a fluorophore labeled hairpin-DNA, i.e. gold-nanobeacon (Au-nanobeacon). Under hairpin configuration, proximity to gold nanoparticles leads to fluorescence quenching; hybridization to a complementary target restores fluorescence emission due to the Au-nanobeacons' conformational reorganization that causes the fluorophore and the AuNP to part from each other, yielding a quantitative response. With this reporter Au-nanobeacon we were able to measure the rate of in vitro RNA synthesis ( 10.3. fmol of RNA per minute). Then, we designed a second Au-nanobeacon targeting the promoter sequence (inhibitor) so as to inhibit transcription whilst simultaneously monitor the number of promoters being silenced. Using the two Au-nanobeacons in the same reaction mixture, we are capable of quantitatively assess in real time the synthesis of RNA and the level of inhibition.The biosensor concept can easily be extended and adapted to situations when real-time quantitative assessment of RNA synthesis and determination of the level of inhibition are required. In fact, this biosensor may assist the in vitro evaluation of silencing potential of a given sequence to be later used for in vivo gene silencing.

Noble metal nanoparticles for biosensing applications, c}alo Doria, Gon{\c, Conde João, Veigas Bruno, Giestas Leticia, Almeida Carina, c}ão Maria Assun{\c, Rosa João, and Baptista {Pedro V. } , Sensors, feb, Volume 12, Number 2, p.1657–1687, (2012) Abstract

In the last decade the use of nanomaterials has been having a great impact in biosensing. In particular, the unique properties of noble metal nanoparticles have allowed for the development of new biosensing platforms with enhanced capabilities in the specific detection of bioanalytes. Noble metal nanoparticles show unique physicochemical properties (such as ease of functionalization via simple chemistry and high surface-to-volume ratios) that allied with their unique spectral and optical properties have prompted the development of a plethora of biosensing platforms. Additionally, they also provide an additional or enhanced layer of application for commonly used techniques, such as fluorescence, infrared and Raman spectroscopy. Herein we review the use of noble metal nanoparticles for biosensing strategies-from synthesis and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics laboratory.

Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis., Machado, D., dos Couto {Isabel Maria Santos Leitão}, Perdigão João, Rodrigues Liliana, Portugal Isabel, Baptista Pedro, Veigas Bruno, Amaral Leonard, and Bettencourt {Miguel Viveiros} , PLoS ONE, apr, Volume 7, Number 4, (2012) Abstract
n/a
Nanophotonics for molecular diagnostics and therapy applications, Conde, João, Rosa João, Lima {João C. }, and Baptista {Pedro V. } , International Journal Of Photoenergy, Volume 2012, (2012) Abstract

Light has always fascinated mankind and since the beginning of recorded history it has been both a subject of research and a tool for investigation of other phenomena. Today, with the advent of nanotechnology, the use of light has reached its own dimension where light-matter interactions take place at wavelength and subwavelength scales and where the physical/chemical nature of nanostructures controls the interactions. This is the field of nanophotonics which allows for the exploration and manipulation of light in and around nanostructures, single molecules, and molecular complexes. What is more is the use of nanophotonics in biomolecular interactionsnanobiophotonicshas prompt for a plethora of molecular diagnostics and therapeutics making use of the remarkable nanoscale properties. In this paper, we shall focus on the uses of nanobiophotonics for molecular diagnostics involving specific sequence characterization of nucleic acids and for gene delivery systems of relevance for therapy strategies. The use of nanobiophotonics for the combined diagnostics/therapeutics (theranostics) will also be addressed, with particular focus on those systems enabling the development of safer, more efficient, and specific platforms. Finally, the translation of nanophotonics for theranostics into the clinical setting will be discussed.

2011
Experimental photophysical characterization of fluorophores in the vicinity of gold nanoparticles, Rosa, {J. P. }, Lima {J. C. }, and Baptista {P. V. } , Nanotechnology, Volume 22, Number 41, (2011) Abstract

We propose an experimental-based tool for dealing with fluorescence modulation close to nanoparticles for application in studies of fluorophores in the vicinity of gold nanoparticles (AuNPs), typically addressed via theoretical models. We performed a photophysical characterization of fluorophores in the vicinity of AuNPs, showing that correct Phi(F) determination suffers from a local pH effect, and address the observed radiative enhancement. Our approach is based on the experimental assurance that the reference fluorophores are in the same optical conditions as those of the AuNP-fluorophore conjugates. We demonstrate the relevance for introducing corrections for the inner filter effect and the reabsorption of the emitted light caused by AuNPs. The proposed approach could circumvent the need for theoretical based corrections and allow for more accurate determination of fluorescence emission in the vicinity of gold nanoparticles.

2008
Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector, de Martins, {Rodrigo Ferrão Paiva}, Baptista Pedro, Silva {Leonardo Bione}, Raniero Leandro, c}alo Dória Gon{\c, Franco Ricardo, and Fortunato E. , Journal of Non-Crystalline Solids, may, Volume 354, Number 19-25, p.2580–2584, (2008) Abstract

This paper describes a novel colorimetric method for detection of nucleic acid targets in a homogeneous format with improved sensitivity by means of a system based on the combination of a tunable monochromatic light source and an amorphous/nanocrystalline silicon photodetector that detects color and light intensity changes undergone by samples/assays containing tailored gold nanoparticles probes. This new low cost, portable, fast and simple optoelectronic platform, with the possibility to be re-used, permits detection of at least 400 fentomole of specific DNA sequences without target or signal amplification and was applied to the rapid detection of human pathogens in large variety of clinical samples such as Mycobacterium tuberculosis.

Characterization of optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of nucleic acid sequences based on gold nanoparticle probes, Silva, {L. B. }, Baptista Pedro, Raniero Leandro, c}alo Doria Gon{\c, de Martins {Rodrigo Ferrão Paiva}, and Fortunato {Elvira Maria Correia} , Sensors and Actuators B: Chemical, jun, Volume 132, Number 2, p.508–511, (2008) Abstract
n/a
2007
Gold nanoparticle based systems in genetics, Gaspar, {Jorge Francisco}, Baptista {Pedro Viana}, and Rueff José , Current Pharmacogenomics, mar, Volume 5, Number 1, p.39–47, (2007) Abstract

Advances in nanoscience are having a significant impact on many scientific fields, boosting the development of a variety of important technologies. The impact of these new technologies is particularly large in biodiagnostics, where a number of nanoparticle-based assays have been introduced for biomolecular detection. The physicochemical malleability and high surface areas of nanoparticle surfaces make them ideal candidates for developing biomarker platforms. Given the variety of strategies afforded through nanoparticle technologies, a significant goal is to tailor nanoparticle surfaces to selectively bind a subset of biomarkers, either for direct detection and characterization or to sequester the target molecules for later study using other available techniques. To date, applications of nanoparticles have largely focused on DNA- or protein-functionalized gold nanoparticles used as the target-specific probes. These unique biophysical properties displayed by gold nanoparticles have huge advantages over conventional detection methods (e.g., molecular fluorophores, microarray technologies). These gold-nanoparticle based systems can then be used for the detection of specific sequences of DNA (pathogen detection, characterization of mutation and/or SNPs) or RNA (without previous retro-transcription and amplification.

Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes, de Martins, {Rodrigo Ferrão Paiva}, Baptista Pedro, Raniero Leandro, c}alo Doria Gon{\c, Silva {L. B. }, Franco Ricardo, and Fortunato {Elvira Maria Correia} , Applied Physics Letters, jan, Volume 90, Number 2, p.n/d, (2007) Abstract

Amorphous/nanocrystalline silicon pi'ii'n devices fabricated on micromachined glass substrates are integrated with oligonucleotide-derivatized gold nanoparticles for a colorimetric detection method. The method enables the specific detection and quantification of unamplified nucleic acid sequences (DNA and RNA) without the need to functionalize the glass surface, allowing for resolution of single nucleotide differences between DNA and RNA sequences-single nucleotide polymorphism and mutation detection. The detector's substrate is glass and the sample is directly applied on the back side of the biosensor, ensuring a direct optical coupling of the assays with a concomitant maximum photon capture and the possibility to reuse the sensor. (c) 2007 American Institute of Physics.

Novel optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences based on gold nanoparticle probes, Silva, {Leonardo Bione}, Baptista Pedro, Raniero Leandro, c}alo Dória Gon{\c, Franco Ricardo, de Martins {Rodrigo Ferrão Paiva}, and Fortunato {Elvira Maria Correia} , Solid-State Sensors, Actuators and Microsystems Conference, 2007, jan, p.935–938, (2007) Abstract
n/a
2003
Óxido Nítrico na Abordagem da Hipertensão Pulmonar no Contexto de Cirurgia Cardíaca do Adulto, Timóteo, {Ana Teresa}, Abecassis Miguel, Baptista Pedro, Rebocho {Maria José, and {Queiroz E Melo} Joáo , Revista Portuguesa de Cardiologia, dec, Volume 22, Number 12, p.1503–1511, (2003) Abstract

Pulmonary hypertension is a significant problem to take into account in the post-operative management of cardiac patients, especially valvular patients. Inhaled nitric oxide allows more effective control of pulmonary pressure and other hemodynamic parameters, with better post-operative results. We present a clinical case of a patient with mitral stenosis and severe pulmonary hypertension, with post-operative hemodynamic instability, in which we used inhaled nitric oxide for better control of pulmonary pressures and to help ventilator weaning.