Publications

Sort by: Type [ Year  (Desc)]
2016
In vitro and in vivo biological characterization of the anti-proliferative potential of a cyclic trinuclear organotin(IV) complex, Martins, Marta, Baptista P. V., Mendo {Ana Soraia}, Correia C., Videira Paula, Rodrigues A. S., Muthukumaran Jayaraman, Santos-Silva Teresa, Silva Ana, {Guedes da Silva} Fatima {M. C. }, Gigante Joana, Duarte Antonio, Gajewska Malgorzata, and Fernandes A. R. , Molecular Biosystems, Volume 12, Number 3, p.1015–1023, (2016) Abstract

Identification of novel molecules that can selectively inhibit the growth of tumor cells, avoid causing side effects to patients and/or intrinsic or acquired resistance, usually associated with common chemotherapeutic agents, is of utmost importance. Organometallic compounds have gained importance in oncologic chemotherapy, such as organotin(IV) complexes. In this study, we assessed the anti-tumor activity of the cyclic trinuclear organotin(IV) complex with an aromatic oximehydroxamic acid group [nBu(2)Sn(L)](3)(H2L = N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) - MG85 - and provided further characterization of its biological targets. We have previously shown the high anti-proliferative activity of this complex against human colorectal and hepatocellular carcinoma cell lines and lower cytotoxicity in neonatal non-tumor fibroblasts. MG85 induces tumor cell apoptosis and down-regulation of proteins related to tubulin dynamics (TCTP and COF1). Further characterization included the: (i) evaluation of interference in the cell cycle progression, including the expression of critical genes; (ii) affinity to DNA and the corresponding mode of binding; (iii) genotoxic potential in cells with deficient DNA repair pathways; and (iv) in vivo tumor reduction efficiency using mouse colorectal carcinoma xenografts.

Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo, Roma-Rodrigues, Catarina, Heuer-Jungemann Amelie, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, Kanaras {Antonios G. }, and Baptista {Pedro Miguel Ribeiro Viana} , International journal of nanomedicine, Volume 11, p.2633–2639, (2016) Abstract

In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP-peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP-peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development.

Synthesis, characterization, thermal properties and antiproliferative potential of copper(II) 4 '-phenylterpyridine compounds, Ma, Zhen, Zhang Bian, {Guedes da Silva} Fátima {M. C. }, Silva Joana, Mendo {Ana Soraia}, Baptista {Pedro Viana}, Fernandes {Alexandra R. }, and Pombeiro {Armando J. L. } , Dalton Transactions, Volume 45, Number 12, p.5339–5355, (2016) Abstract

Reactions between 4'-phenyl-terpyridine (L) and several Cu(II) salts (p-toluenesulfonate, benzoate and o-, m-or p-hydroxybenzoate) led to the formation of [Cu(p-SO3C6H4CH3)L(H2O)(2)](p-SO3C6H4CH3) (1), [Cu(OCOPh)(2)L] (2), [Cu(o-OCOC6H4OH)(2)L] (3), [Cu(m-OCOC6H4OH)(2)L]center dot MeOH (4 center dot MeOH) and [Cu(pOCOC(6)H(4)OH)(2)L]center dot 2H(2)O (5 center dot 2H2O), which were characterized by elemental and TG-DTA analyses, ESI-MS, IR spectroscopy and single crystal X-ray diffraction, as well as by conductivimetry. In all structures the Cu atoms present N3O3 octahedral coordination geometries, which, in 2-5, are highly distorted as a result of the chelating-bidentate mode of one of the carboxylate ligands. Intermolecular pi...pi stacking interactions could also be found in 2-5 (in the 3.569-3.651 angstrom range and involving solely the pyridyl rings). Mediumstrong hydrogen bond interactions lead to infinite 1D chains (in 1 and 4) and to an infinite 2D network (in 5). Compounds 1 and 4 show high in vitro cytotoxicity towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma cell lines. The antiproliferative potential of compound 1 is due to an increase of the apoptotic process that was confirmed by Hoechst staining, flow cytometry and RT-qPCR. All compounds able to non-covalently intercalate the DNA helix and induce in vitro pDNA double-strand breaks in the absence of H2O2. Concerning compound 1, the hydroxyl radical and singlet oxygen do not appear to be involved in the pDNA cleavage process and the fact that this cleavage also occurs in the absence of molecular oxygen points to a hydrolytic mechanism of cleavage.

2015
Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine, Mendo, {Ana Soraia}, Figueiredo Sara, Roma-Rodrigues Catarina, Videira {Paula A. }, Ma Zhen, Diniz Mario, Larguinho Miguel, Costa P. M., Lima {Joao C. }, Pombeiro {Armando J. L. }, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , JBIC Journal of Biological Inorganic Chemistry, sep, Volume 20, Number 6, p.935–948, (2015) Abstract

Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)(2)}L](NO3)(2) incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.

Gold nanoparticles for DNA/RNA-based diagnostics, Franco, Ricardo, Pedrosa Pedro, Carlos {Fábio Ferreira}, Veigas Bruno, and Baptista {Pedro Miguel Ribeiro Viana} , Handbook of Nanoparticles, sep, Switzerland, p.1339–1370, (2015) Abstract

The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted development in exploring biomolecular interactions with AuNPscontaining systems, pursuing biomedical applications in diagnostics. Among these applications, AuNPs have been remarkably useful for the development of DNA/RNA detection and characterization systems for diagnostics, including systems suitable for point of need. Here, emphasis will be on available molecular detection schemes of relevant pathogens and their molecular characterization, genomic sequences associated with medical conditions (including cancer), mutation and polymorphism identification, and the quantification of gene expression.

Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine's tool Box, Martins, Pedro, Jesus Joao, Santos Sofia, Raposo {Luis R. }, Roma-Rodrigues Catarina, Baptista {Pedro Miguel Ribeiro Viana}, and de Fernandes {Maria Alexandra Núncio Carvalho Ramos} , Molecules, sep, Volume 20, Number 9, p.16852–16891, (2015) Abstract

The majority of heterocycle compounds and typically common heterocycle fragments present in most pharmaceuticals currently marketed, alongside with their intrinsic versatility and unique physicochemical properties, have poised them as true cornerstones of medicinal chemistry. Apart from the already marketed drugs, there are many other being investigated for their promising activity against several malignancies. In particular, anticancer research has been capitalizing on the intrinsic versatility and dynamic core scaffold of these compounds. Nevertheless, as for any other promising anticancer drugs, heterocyclic compounds do not come without shortcomings. In this review, we provide for a concise overview of heterocyclic active compounds and families and their main applications in medicine. We shall focus on those suitable for cancer therapy while simultaneously addressing main biochemical modes of action, biological targets, structure-activity relationships as well as intrinsic limitation issues in the use of these compounds. Finally, considering the advent of nanotechnology for effective selective targeting of drugs, we shall discuss fundamental aspects and considerations on nanovectorization of such compounds that may improve pharmacokinetic/pharmacodynamic properties of heterocycles.

Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics, Larguinho, Miguel, Canto Rafaela, Cordeiro Milton, Pedrosa Pedro, Fortuna Andreia, Vinhas Raquel, and Baptista {Pedro Miguel Ribeiro Viana} , Expert Review Of Molecular Diagnostics, oct, Volume 15, Number 10, p.1355–1368, (2015) Abstract

Non-crosslinking (NCL) approaches using DNA-modified gold nanoparticles for molecular detection constitute powerful tools with potential implications in clinical diagnostics and tailored medicine. From detection of pathogenic agents to identification of specific point mutations associated with health conditions, these methods have shown remarkable versatility and simplicity. Herein, the NCL hybridization assay is broken down to the fundamentals behind its assembly and detection principle. Gold nanoparticle synthesis and derivatization is addressed, emphasizing optimal size homogeneity and conditions for maximum surface coverage, with direct implications in downstream detection. The detection principle is discussed and the advantages and drawbacks of different NCL approaches are discussed. Finally, NCL-based applications for molecular detection of clinically relevant loci and potential integration into more complex biosensing platforms, projecting miniaturization and portability are addressed.

Scalable approach for the production of functional DNA based gold nanoprobes, Veigas, Bruno, Portugal Carla, Valério Rita, Fortunato Elvira, Crespo {João G. }, and Baptista Pedro , Journal of Membrane Science, oct, Volume 492, p.528–535, (2015) Abstract

Nanoparticle based systems, in particular gold nanoparticles (AuNPs), provide for simple calorimetric detection of molecular biomarkers, such as DNA, RNA. These systems rely on the functionalization of AuNPs with ssDNA oligonucleotides requiring strenuous laboratory centrifugation steps not compatible with industrial scale up. Here, we demonstrate the potential of dia-ultrafiltration for purification of Au-nanoprobes. We show that dia-ultrafiltration can be regarded as better alternative to centrifugation, allowing for a less intensive sample manipulation, easier transposable to the industrial scale. The purification of AuNPs was performed by dia-ultrafiltration using membranes of regenerated cellulose with a nominal molecular weight cut-off (MWCO) of 10 kDa and a processing strategy which combined subsequent AuNPs cleaning and concentration steps. instead of the permeation flux decline typically found in ultrafiltration processes operated under concentration modes, purification of Au-nanoprobes by dia-ultrafiltration was followed by a subtle increase of the permeation fluxes. This effect was ascribed to improved external mass transfer conditions near the membrane surface, prompted by the decrease of the overall solute concentration in the retentate over the process Lime. This strategy allowed for the total retention of the AuNPS, yielding nanoprobes capable of higher signal to noise ratios. Proof-of-concept was directed at the synthesis of Au-nanoprobes for identification of members of the Mycobacterium tuberculosis complex that cause tuberculosis in humans. (C) 2015 Elsevier B.V. All rights reserved.

Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives, Veigas, Bruno, Baptista {Pedro Miguel Ribeiro Viana}, and Fortunato Elvira , Sensors, may, Volume 15, Number 5, p.10380–10398, (2015) Abstract

In the last decade the use of field-effect-based devices has become a basic structural element in a new generation of biosensors that allow label-free DNA analysis. In particular, ion sensitive field effect transistors (FET) are the basis for the development of radical new approaches for the specific detection and characterization of DNA due to FETs' greater signal-to-noise ratio, fast measurement capabilities, and possibility to be included in portable instrumentation. Reliable molecular characterization of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. FET biosensors may become a relevant tool for molecular diagnostics and at point-of-care. The development of these devices and strategies should be carefully designed, as biomolecular recognition and detection events must occur within the Debye length. This limitation is sometimes considered to be fundamental for FET devices and considerable efforts have been made to develop better architectures. Herein we review the use of field effect sensors for nucleic acid detection strategiesfrom production and functionalization to integration in molecular diagnostics platforms, with special focus on those that have made their way into the diagnostics lab.

Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial, Vinhas, Raquel, Cordeiro Milton, Carlos {Fábio Ferreira}, Mendo Soraia, Fernandes {Alexandra R. }, Figueiredo Sara, and Baptista {Pedro V. } , Nanobiosensors in Disease Diagnosis, may, Volume 4, p.11–23, (2015) Abstract

Nanotheranostics takes advantage of nanotechnology-based systems in order to diagnose and treat a specific disease. This approach is particularly relevant for personalized medicine, allowing the detection of a disease at an early stage, to direct a suitable therapy toward the target tissue based on the molecular profile of the altered phenotype, subsequently facilitating disease monitoring and following treatment. A tailored strategy also enables to reduce the off-target effects associated with universal treatments and improve the safety profile of a given treatment. The unique optical properties of gold nanoparticles, their ease of surface modification, and high surface-to-volume ratio have made them central players in this area. By combining imaging, targeting, and therapeutic agents in a single vehicle, these nanoconjugates are (ought to be) an important tool in the clinics. In this review, the multifunctionality of gold nanoparticles as theranostics agents will be highlighted, as well as the requirements before the translation of these nanoplatforms into routine clinical practice.

Single Nucleotide Polymorphism Detection Using Gold Nanoprobes and Bio-Microfluidic Platform With Embedded Microlenses, Bernacka-Wojcik, Iwona, Águas Hugo, Carlos {Fabio Ferreira}, Lopes Paulo, Wojcik {Pawel Jerzy}, Costa {Mafalda Nascimento}, Veigas Bruno, Igreja Rui, Fortunato Elvira, Baptista Pedro, and Martins Rodrigo , Biotechnology and Bioengineering, jun, Volume 112, Number 6, p.1210–1219, (2015) Abstract

The use of microfluidics platforms combined with the optimal optical properties of gold nanopartides has found plenty of application in molecular biosensing. This paper describes a biotnicrofluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/mu l below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/mu l) with 10 times lower solution volume (i.e., 3 mu l.). A set of optimization of our previously reported bio-microfluidic platform (Bemacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanopartides, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' cobrimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical micmscope to a digital camera with a long exposure time (30s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates). (C) 2015 Wiley Periodicals, Inc.

Mobile based gold nanoprobe TB diagnostics for point-of-need, Veigas, B., Fortunato E., and Baptista {P. V. } , Mobile Health Technologies: Methods and Protocols, jan, Volume Part 1, United States, p.41–56, (2015) Abstract

Nanotechnology based diagnostics has provided improved tools for pathogen detection and sensitive and specific characterization of antibiotic resistance signatures. Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis Complex (MTBC) and, according to the World Health Organization, is one of the most serious infectious diseases in the world. Recent advances in molecular diagnostics of TB have improved both the detection time and sensitivity but they still require specialized technical personnel and cumbersome laboratory equipment. Diagnostics at point-of-need is crucial to TB control as it may provide rapid identification of pathogen together with the resistance profile of TB strains, originated from single nucleotide polymorphisms (SNPs) in different loci , allowing for a more accurate indication of the adequate therapy.Gold nanoparticles have been widely used in molecular diagnostics platforms. Here, we describe the use of gold nanoprobes (oligonucleotide functionalized gold nanoparticles) to be used in a non-crosslinking colorimetric method for the direct detection of specific DNA targets. Due to the remarkable optical properties of gold nanoparticles, this detection system provides colorimetric detection of the pathogen together with the potential of identification of several single nucleotide polymorphisms (SNPs) involved in TB resistance to antibiotics. For point-of-need use, we adapted this strategy to a low-cost mobile scheme using a paper based revelation platform and where the spectral signature is transposed to RGB data via a smartphone device. This way, identification of pathogen and characterization of resistance signatures is achieved at point-of-need.

Gold Nanotheranostics: Proof-of-Concept or Clinical Tool?, Pedrosa, Pedro, Vinhas Raquel, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, and Baptista {Pedro Miguel Ribeiro Viana} , Nanomaterials, dec, Volume 5, Number 4, p.1853–1879, (2015) Abstract

Nanoparticles have been making their way in biomedical applications and personalized medicine, allowing for the coupling of diagnostics and therapeutics into a single nanomaterial-nanotheranostics. Gold nanoparticles, in particular, have unique features that make them excellent nanomaterials for theranostics, enabling the integration of targeting, imaging and therapeutics in a single platform, with proven applicability in the management of heterogeneous diseases, such as cancer. In this review, we focus on gold nanoparticle-based theranostics at the lab bench, through pre-clinical and clinical stages. With few products facing clinical trials, much remains to be done to effectively assess the real benefits of nanotheranostics at the clinical level. Hence, we also discuss the efforts currently being made to translate nanotheranostics into the market, as well as their commercial impact.

One nanoprobe, two pathogens: gold nanoprobes multiplexing for point-of-care, Veigas, Bruno, Pedrosa Pedro, Carlos {Fábio F. }, Mancio-Silva Liliana, Grosso {Ana Rita}, Fortunato Elvira, Mota {Maria M. }, and Baptista Pedro , Journal of Nanobiotechnology, aug, Volume 13, Number 1, (2015) Abstract

Background: Gold nanoparticles have been widely employed for biosensing purposes with remarkable efficacy for DNA detection. Amongst the proposed systems, colorimetric strategies based on the remarkable optical properties have provided for simple yet effective sequence discrimination with potential for molecular diagnostics at point of need. These systems may also been used for parallel detection of several targets to provide additional information on diagnostics of pathogens.Results: For the first time, we demonstrate that a single Au-nanoprobe may provide for detection of two distinct targets (pathogens) allowing colorimetric multi-target detection. We demonstrate this concept by using one single gold-nanoprobe capable to detect members of the Mycobacterium tuberculosis complex and Plasmodium sp., the etiologic agents of tuberculosis and malaria, respectively. Following characterisation, the developed gold-nanoprobe allowed detection of either target in individual samples or in samples containing both DNA species with the same efficacy.Conclusions: Using one single probe via the non-cross-linking colorimetric methodology it is possible to identify multiple targets in one sample in one reaction. This proof-of-concept approach may easily be integrated into sensing platforms allowing for fast and simple multiplexing of Au-nanoprobe based detection at point-of-need.

POxylated Polyurea Dendrimers: Smart Core-Shell Vectors with IC50 Lowering Capacity, Restani, {Rita B. }, Conde João, Pires {Rita F. }, Martins Pedro, Fernandes {Alexandra R. }, Baptista {Pedro V. }, Bonifacio {Vasco D. B. }, and Aguiar-Ricardo Ana , Macromolecular Bioscience, aug, Volume 15, Number 8, p.1045–1051, (2015) Abstract

The design and preparation of highly efficient drug delivery platforms using green methodologies is at the forefront of nanotherapeutics research. POxylated polyurea dendrimers are efficiently synthesized using a supercritical-assisted polymerization in carbon dioxide. These fluorescent, pH-responsive and water-soluble core-shell smart nanocarriers show low toxicity in terms of cell viability and absence of glutathione depletion, two of the major side effect limitations of current vectors. The materials are also found to act as good transfection agents, through a mechanism involving an endosomal pathway, being able to reduce 100-fold the IC50 of paclitaxel.

GOLD NANOPROBES IN THE DIAGNOSTIC OF CHRONIC MYELOID LEUKEMIA: DETECTION OF THE E14A2 BCR-ABL TRANSCRIPT DIRECTLY IN RNA SAMPLES, Vinhas, Raquel, Correia C., Ribeiro P., Lourenco A., Sousa A., Fernandes A., and Baptista P. , Leukemia research, apr, Volume 39, p.S90–S90, (2015) Abstract
n/a
2014
Characterization of genomic single nucleotide polymorphism via colorimetric detection using a single gold nanoprobe, Carlos, {Fabio Ferreira}, Flores Orfeu, Doria Goncalo, and Baptista Pedro , Analytical Biochemistry, nov, Volume 465, p.1–5, (2014) Abstract

Identification of specific nucleic acid sequences mediated by gold nanoparticles derivatized thiol-modified oligonucleotides (Au-nanoprobes) has been proven to be a useful tool in molecular diagnostics. Here, we demonstrate that, on optimization, detection may be simplified via the use of a single Au-nanoprobe to detect a single nucleotide polymorphism (SNP) in homo- or heterozygote condition. We validated this non-cross-linking approach through the analysis of 20 clinical samples using a single specific Au-nanoprobe for an SNP in the FTO (fat mass and obesity-associated) gene against direct DNA sequencing. Sensitivity, specificity, and limit of detection CLOD) were determined, and statistical differences were calculated by one-way analysis of variance (ANOVA) and a post hoc Tukey's test to ascertain whether there were any differences between Au-nanoprobe genotyped groups. For the first time, we show that the use of a single Au-nanoprobe can detect SNP for each genetic status (wild type, heterozygous, or mutant) with high degrees of sensitivity (87.50%) and specificity (91.67%). (c) 2014 Elsevier Inc. All rights reserved.

Método colorimétrico e estojo de detec{\c c}ão de sequências específicas de ácidos nucléicos através de nanopartículas metálicas funcionalizadas com oligonucleotídos modificados., Tavares, {Jose Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Dória {Goncalo Maria Reimao Pinto De Franca}, and Flores {Alcino Orfeu De Leao} , nov, (2014) Abstract
n/a
A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: Lab-on-paper, Costa, {Mafalda Nascimento}, Veigas Bruno, Jacob {Jorge M. }, Santos {David S. }, Gomes Jacinto, Baptista {Pedro Viana}, Martins Rodrigo, Inácio João, and Fortunato Elvira , Nanotechnology, mar, Volume 25, Number 9, (2014) Abstract

There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our results towards the development of paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. Focusing on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, we present three main and distinct colorimetric approaches: (i) enzymatic reactions (glucose detection); (ii) immunoassays (antibodies anti-Leishmania detection); (iii) nucleic acid sequence identification (Mycobacterium tuberculosis complex detection). Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The colouration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a 3D sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the coloured products usually occurs. The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibres. The detection of Mycobacterium tuberculosis nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The obtained results with the above-mentioned proof-of-concept sensors are thus promising towards the future development of simple and cost-effective paper-based diagnostic devices.

Application of Nanotechnology in Drug Delivery, Silva, Joana, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Application of Nanotechnology in Drug Delivery, jul, (2014) Abstract
n/a
Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length, Fortunato, {Elvira Maria Correia}, Águas {Hugo Manuel Brito}, Busani {Tito Livio}, de Martins {Rodrigo Ferrão Paiva}, and Baptista {Pedro Miguel Ribeiro Viana} , RSC Advances, jan, Volume 4, Number 99, p.56013–56025, (2014) Abstract

This paper presents the performance of a passive planar rhombic micromixer with diamond-shaped obstacles and a rectangular contraction between the rhombi. The device was experimentally optimized using water for high mixing efficiency and a low pressure drop over a wide range of Reynolds numbers (Re = 0.1-117.6) by varying geometrical parameters such as the number of rhombi, the distance between obstacles and the contraction width. Due to the large amount of data generated, statistical methods were used to facilitate and improve the results of the analysis. The results revealed a rank of factors influencing mixing efficiency: Reynolds number > number of rhombi > contraction width > interobstacles distance. The pressure drop measured after three rhombi depends mainly on Re and interobstacle distance. The resulting optimum geometry for the low Re regime has a contraction width of 101 mu m and inter-obstacles distance of 93 mu m, while for the high Re regime a contraction width of 400 v and inter-obstacle distance of 121 mu m are more appropriate. These mixers enabled 80% mixing efficiency creating a pressure drop of 6.0 Pa at Re = 0.1 and 5.1 x 10(4) Pa at Re = 117.6, with a mixer length of 2.5 mu m. To the authors' knowledge, the developed mixer is one of the shortest planar passive micromixers reported to date.

Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions., de Fernandes, {Maria Alexandra Núncio Carvalho Ramos}, and Baptista {Pedro Miguel Ribeiro Viana} , Anti-Cancer Agents In Medicinal Chemistry, jan, Volume 14, Number 9, p.1199–1212, (2014) Abstract
n/a
Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification, Veigas, Bruno, Branquinho Rita, {Vaz Pinto} Joana, Wojcik {Pawel Jerzy}, de Martins {Rodrigo Ferrão Paiva}, Fortunato {Elvira Maria Correia}, and Baptista {Pedro Miguel Ribeiro Viana} , Biosensors & Bioelectronics, feb, Volume 52, p.50–55, (2014) Abstract

Field-effect-based devices are becoming a basic structural element in a new generation of microbiosensors. Reliable molecular characterization of DNA and/or RNA is of paramount importance for disease diagnostics and to follow up alterations in gene expression profiles. The use of such devices for point-of-need diagnostics has been hindered by the need of standard or real-time PCR amplification procedures. The present work focuses on the development of a tantalum pentoxide (Ta2O5) based sensor for the real-time label free detection of DNA amplification via loop mediated isothermal amplification (LAMP) allowing for quantitative analysis of the cMYC proto-oncogene. The strategy based on the field effect sensor was tested within a range of 1 x 10(8)-10(11) copies of target DNA, and a linear relationship between the log copy number of the initial template DNA and threshold time was observed allowing for a semi-quantitative analysis of DNA template. The concept offers many of the advantages of isothermal quantitative real-time DNA amplification in a label free approach and may pave the way to point-of-care quantitative molecular analysis focused on ease of use and low cost.

AuNPs for identification of molecular signatures of resistance, Veigas, Bruno, Fernandes {Alexandra R. }, and Baptista Pedro , Frontiers in Microbiology, aug, Volume 5, (2014) Abstract

The increasing levels of drug resistance are one of biggest threats to overcome microbial infection. The ability to rapidly and accurately detect a given pathogen and its drug resistance profile is essential for the appropriate treatment of patients and for preventing further spread of drug-resistant strains. The predictive and informative value of these molecular markers needs to be translated into robust surveillance tools that correlate to the target and extent of resistance, monitor multiresistance and provide real time assessment at point-of-need. Rapid molecular assays for the detection of drug-resistance signatures in clinical specimens are based on the detection of specific nucleotide sequences and/or mutations within pre-selected biomarkers in the genome, indicative of the presence of the pathogen and/or associated with drug resistance. DNA and/or RNA based assays offer advantages over phenotypic assays, such as specificity and time from collection to result. Nanotechnology has provided new and robust tools for the detection of pathogens and more crucially to the fast and sensitive characterisation of molecular signatures of drug resistance. Amongst the plethora of nanotechnology based approaches, gold nanoparticles have prompt for the development of new strategies and platforms capable to provide valuable data at point-of-need with increased versatility but reduced costs. Gold nanoparticles, due to their unique spectral, optical and electrochemical properties, are one of the most widely used nanotechnology systems for molecular diagnostics. This review will focus on the use of gold nanoparticles for screening molecular signatures of drug resistance that have been reported thus far, and provide a critical evaluation of current and future developments of these technologies assisting pathogen identification and characterisation.

AuNPs for identification of molecular signatures of resistance., Veigas, Bruno, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Frontiers in Microbiology, aug, (2014) Abstract
n/a