The ongoing German energy transition causes a higher demand for reliable energy storage in the future. This increasing demand for sustainable, cheap, safe and efficient energy storage systems has caused a stronger public debate about the potential benefits of grid battery storage according to sustainability. This circumstance led to the preposition that there is a need for the development of a proper ex-ante assessment strategy to support technology uptake. The developed approach represents a framework for prospective system analysis (PSA) using the heuristics of constructive technology assessment to identify consequences, application possibilities or threats in the technological trajectory of grid battery storage. Within this framework PSA is used to quantitatively assess economic, environmental and social aspects along the entire life cycle of electrochemical energy storage technologies in order to identify hotspots according to sustainability. The Analytic Hierarchic Process (AHP) supports multiple methods in data collection and enables the analyst to combine results from PSA with qualitative actor notions about technology according to the “world” where it is embodied. In this sense AHP enables to achieve an optimum construct of technology from a stakeholder view point. The developed approach represents an efficient research strategy to shape technology in a sustainable way in frame of „Responsible Research and Innovation“.
Based on the report for the unit “Project IV” of the PhD programme on Technology Assessment under the supervision of Dr.-Ing. Marcel Weil and Prof. Dr. António Brandão Moniz. The report was presented and discussed at the Doctorate Conference on Technologogy Assessment in July 2013 at the University Nova Lisboa, Caparica campus.