Publications

Sort by: Type [ Year  (Desc)]
2024
Copper(II) Complexes with 2,2′:6′,2″-Terpyridine Derivatives Displaying Dimeric Dichloro−μ-Bridged Crystal Structure: Biological Activities from 2D and 3D Tumor Spheroids to In Vivo Models, Choroba, Katarzyna, Machura Barbara, Erfurt Karol, Casimiro {Ana Rita}, Cordeiro Sandra, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Journal Of Medicinal Chemistry, Volume 67, Number 7, p.5813–5836, (2024) Abstract

Eight 2,2′:6′,2″-terpyridines, substituted at the 4′-position with aromatic groups featuring variations in π-conjugation, ring size, heteroatoms, and methoxy groups, were employed to enhance the antiproliferative potential of [Cu2Cl2(R-terpy)2](PF6)2. Assessing the cytotoxicity in A2780 (ovarian carcinoma), HCT116 (colorectal carcinoma), and HCT116DoxR (colorectal carcinoma resistant to doxorubicin) and normal primary fibroblasts revealed that Cu(II) complexes with 4-quinolinyl, 4-methoxy-1-naphthyl, 2-furanyl, and 2-pyridynyl substituents showed superior therapeutic potential in HCT116DoxR cells with significantly reduced cytotoxicity in normal fibroblasts (42-129× lower). Besides their cytotoxicity, the Cu(II) complexes are able to increase intracellular ROS and interfere with cell cycle progression, leading to cell death by apoptosis and autophagy. Importantly, they demonstrated antimetastatic and antiangiogenic properties without in vivo toxicity. In accordance with their nuclear accumulation, the Cu(II) complexes are able to cleave pDNA and interact with bovine serum albumin, which is a good indication of their ability for internalization and transport toward tumor cells.

2023
Cell Uptake of Steroid-BODIPY Conjugates and Their Internalization Mechanisms: Cancer Theranostic Dyes, Amendoeira, {Ana F. }, Luz André, Valente Ruben, Roma-Rodrigues Catarina, Ali Hasrat, {van Lier} {Johan E. }, Marques Fernanda, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, feb, Volume 24, Number 4, (2023) Abstract

Estradiol-BODIPY linked via an 8-carbon spacer chain and 19-nortestosterone- and testosterone-BODIPY linked via an ethynyl spacer group were evaluated for cell uptake in the breast cancer cell lines MCF-7 and MDA-MB-231 and prostate cancer cell lines PC-3 and LNCaP, as well as in normal dermal fibroblasts, using fluorescence microscopy. The highest level of internalization was observed with 11β-OMe-estradiol-BODIPY 2 and 7α-Me-19-nortestosterone-BODIPY 4 towards cells expressing their specific receptors. Blocking experiments showed changes in non-specific cell uptake in the cancer and normal cells, which likely reflect differences in the lipophilicity of the conjugates. The internalization of the conjugates was shown to be an energy-dependent process that is likely mediated by clathrin- and caveolae-endocytosis. Studies using 2D co-cultures of cancer cells and normal fibroblasts showed that the conjugates are more selective towards cancer cells. Cell viability assays showed that the conjugates are non-toxic for cancer and/or normal cells. Visible light irradiation of cells incubated with estradiol-BODIPYs 1 and 2 and 7α-Me-19-nortestosterone-BODIPY 4 induced cell death, suggesting their potential for use as PDT agents.

Combining the amplification refractory mutation system and high-resolution melting analysis for KRAS mutation detection in clinical samples, Oliveira, {Beatriz B. }, Costa Beatriz, Morão Bárbara, Faias Sandra, Veigas Bruno, Pereira {Lucília Pebre}, Albuquerque Cristina, Maio Rui, Cravo Marília, Fernandes {Alexandra R. }, and Baptista {Pedro Viana} , Analytical and Bioanalytical Chemistry, Volume 415, Number 14, p.2849–2863, (2023) Abstract

The success of personalized medicine depends on the discovery of biomarkers that allow oncologists to identify patients that will benefit from a particular targeted drug. Molecular tests are mostly performed using tumor samples, which may not be representative of the tumor’s temporal and spatial heterogeneity. Liquid biopsies, and particularly the analysis of circulating tumor DNA, are emerging as an interesting means for diagnosis, prognosis, and predictive biomarker discovery. In this study, the amplification refractory mutation system (ARMS) coupled with high-resolution melting analysis (HRMA) was developed for detecting two of the most relevant KRAS mutations in codon 12. After optimization with commercial cancer cell lines, KRAS mutation screening was validated in tumor and plasma samples collected from patients with pancreatic ductal adenocarcinoma (PDAC), and the results were compared to those obtained by Sanger sequencing (SS) and droplet digital polymerase chain reaction (ddPCR). The developed ARMS-HRMA methodology stands out for its simplicity and reduced time to result when compared to both SS and ddPCR but showing high sensitivity and specificity for the detection of mutations in tumor and plasma samples. In fact, ARMS-HRMA scored 3 more mutations compared to SS (tumor samples T6, T7, and T12) and one more compared to ddPCR (tumor sample T7) in DNA extracted from tumors. For ctDNA from plasma samples, insufficient genetic material prevented the screening of all samples. Still, ARMS-HRMA allowed for scoring more mutations in comparison to SS and 1 more mutation in comparison to ddPCR (plasma sample P7). We propose that ARMS-HRMA might be used as a sensitive, specific, and simple method for the screening of low-level mutations in liquid biopsies, suitable for improving diagnosis and prognosis schemes. Graphical Abstract: [Figure not available: see fulltext.]

2021
Combined cancer therapeutics—Tackling the complexity of the tumor microenvironment, Roma-Rodrigues, Catarina, Raposo {Luís R. }, Valente Rúben, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, sep, Volume 13, Number 5, (2021) Abstract

Cancer treatment has yet to find a “silver bullet” capable of selectively and effectively kill tumor cells without damaging healthy cells. Nanomedicine is a promising field that can combine several moieties in one system to produce a multifaceted nanoplatform. The tumor microenvironment (TME) is considered responsible for the ineffectiveness of cancer therapeutics and the difficulty in the translation from the bench to bed side of novel nanomedicines. A promising approach is the use of combinatorial therapies targeting the TME with the use of stimuli-responsive nanomaterials which would increase tumor targeting. Contemporary combined strategies for TME-targeting nanoformulations are based on the application of external stimuli therapies, such as photothermy, hyperthermia or ultrasounds, in combination with stimuli-responsive nanoparticles containing a core, usually composed by metal oxides or graphene, and a biocompatible stimuli-responsive coating layer that could also contain tumor targeting moieties and a chemotherapeutic agent to enhance the therapeutic efficacy. The obstacles that nanotherapeutics must overcome in the TME to accomplish an effective therapeutic cargo delivery and the proposed strategies for improved nanotherapeutics will be reviewed. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.

Copper(ii) complexes with tridentate halogen-substituted Schiff base ligands: synthesis, crystal structures and investigating the effect of halogenation, leaving groups and ligand flexibility on antiproliferative activities, Kordestani, Nazanin, {Amiri Rudbari} Hadi, Fernandes {Alexandra R. }, Raposo {Luís R. }, Luz André, Baptista {Pedro V. }, Bruno Giuseppe, Scopelliti Rosario, Fateminia Zohreh, Micale Nicola, Tumanov Nikolay, Wouters Johan, {Abbasi Kajani} Abolghasem, and Bordbar {Abdol Khalegh} , Dalton Transactions, mar, Volume 50, Number 11, p.3990–4007, (2021) Abstract

To investigate the effect of different halogen substituents and leaving groups and the flexibility of ligands on the anticancer activity of copper complexes, sixteen copper(ii) complexes with eight different tridentate Schiff-base ligands containing pyridine and 3,5-halogen-substituted phenol moieties were synthesized and characterized by spectroscopic methods. Four of these complexes were also characterized by X-ray crystallography. The cytotoxicity of the complexes was determined in three different tumor cell lines (i.e.the A2780 ovarian, HCT116 colorectal and MCF7 breast cancer cell line) and in a normal primary fibroblast cell line. Complexes were demonstrated to induce a higher loss of cell viability in the ovarian carcinoma cell line (A2780) with respect to the other two tumor cell lines, and therefore the biological mechanisms underlying this loss of viability were further investigated. Complexes with ligandL1(containing a 2-pycolylamine-type motif) were more cytotoxic than complexes withL2(containing a 2-(2-pyridyl)ethylamine-type motif). The loss of cell viability in A2780 tumor cells was observed in the orderCu(Cl2-L1)NO3>Cu(Cl2-L1)Cl>Cu(Br2-L1)Cl>Cu(BrCl-L1)Cl. All complexes were able to induce reactive oxygen species (ROS) that could be related to the loss of cell viability. ComplexesCu(BrCl-L1)ClandCu(Cl2-L1)NO3were able to promote A2780 cell apoptosis and autophagy and for complexCu(BrCl-L1)Clthe increase in apoptosis was due to the intrinsic pathway.Cu(Cl2-L1)ClandCu(Br2-L1)Clcomplexes lead to cellular detachment allowing to correlate with the results of loss of cell viability. Despite the ability of theCu(BrCl-L1)Clcomplex to induce programmed cell death in A2780 cells, its therapeutic window turned out to be low making theCu(Cl2-L1)NO3complex the most promising candidate for additional biological applications.

Cu(i) complexes as new antiproliferative agents against sensitive and doxorubicin resistant colorectal cancer cells: synthesis, characterization, and mechanisms of action, Sequeira, Diogo, Baptista {Pedro V. }, Valente Ruben, Piedade Fátima {M. M. M. }, Garcia Helena} {M., Morais {Tânia S. }, and Fernandes {Alexandra R. } , Dalton Transactions, feb, Volume 50, Number 5, p.1845–1865, (2021) Abstract

Cancer is one of the worst health issues worldwide, representing the second leading cause of death. Current chemotherapeutic drugs face some challenges like the acquired resistance of the tumoral cells and low specificity leading to unwanted side effects. There is an urgent need to develop new compounds that may target resistant cells. The synthesis and characterization of two Cu(i) complexes of general formula [Cu(PP)(LL)][BF4], where PP is a phosphane ligand (triphenylphosphine or 1,2-bis(diphenylphosphano) ethane) and LL = is a heteroaromatic bidentate ligand (4,4′-dimethyl-2,2′-bipyridine and 6,3-(2-pyridyl)-5,6-diphenyl-1,2,4-triazine). The new compounds were fully characterized by spectroscopic techniques (NMR, FTIR and UV-vis.), elemental analysis (C, H, N and S) and two structures were determined by single X-ray diffraction studies. The antiproliferative potential of the new Cu(i) complexes were studied in tumor (breast adenocarcinoma, ovarian carcinoma and in colorectal carcinoma sensitive and resistant to doxorubicin) and normal (fibroblasts) cell lines. Complexes1-4did not show any antiproliferative potential. Amongst the complexes5-8, complex8shows high cytotoxic potential against colorectal cancer sensitive and resistant to doxorubicin and low cytotoxicity towards healthy cells. We show that complexes5-8can cleave pDNA and, in particular, thein vitropDNA cleavage is due to an oxidative mechanism. This oxidative mechanism corroborates the induction of reactive oxygen species (ROS), that triggers HCT116 cell deathviaapoptosis, as proved by the increased expression of BAX protein relative to BCL-2 protein and the depolarization of mitochondrial membrane potential, andviaautophagy. Additionally, complex8can block the cell cycle in the G1 phase, also exhibiting a cytostatic potential. Proteomic analysis confirmed the apoptotic, autophagic and cytostatic potential of complex8, as well as its ability to produce ROS and cause DNA damage. The interference of the complex in folding and protein synthesis and its ability to cause post-translational modifications was also verified. Finally, it was observed that the complex causes a reduction in cellular metabolism. The results herein demonstrated the potential of Cu(i) complexes in targeting doxorubicin sensitive and resistant cells which is positive and must be further explored usingin vivoanimal models.

Cation-mediated gelation of the fucose-rich polysaccharide FucoPol: preparation and characterization of hydrogel beads and their cytotoxicity assessment, Fialho, Letícia, Araújo Diana, Alves {Vitor D. }, Roma-Rodrigues Catarina, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Freitas Filomena, and Reis {Maria A. M. } , International Journal of Polymeric Materials and Polymeric Biomaterials, Volume 70, Number 2, (2021) Abstract

This study describes for the first time the iron- and copper-mediated gelation of FucoPol, fucose-rich bacterial polysaccharide. The ability of FucoPol to gel in the presence of metal cations, including iron(III) and copper(II), was used for the preparation of hydrogel beads. Iron mediated the formation of stable and not cytotoxic gel beads, while copper resulted in fragile and cytotoxic ones. Copper-mediated beads coated with an iron-mediated gel layer were more stable and had reduced cytotoxicity. The resulting polymeric structures had differing morphology, physical properties and cytotoxicity, which support their use in several applications, including biomedicine, agriculture and bioremediation.

2020
Correction to: Nano-in-Micro Sildenafil Dry Powder Formulations for the Treatment of Pulmonary Arterial Hypertension Disorders: The Synergic Effect of POxylated Polyurea Dendrimers, PLGA, and Cholesterol (Part. Part. Syst. Charact, (2020), 37, (1900447), , Restani, {Rita B. }, Tavares {Márcia T. }, Pires {Rita F. }, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Casimiro Teresa, Bonifácio {Vasco D. B. }, and Aguiar-Ricardo Ana , Particle and Particle Systems Characterization, nov, Volume 37, Number 11, (2020) Abstract

Part. Part. Syst. Charact. 2020, 37, 1900447 In the originally published manuscript, the author Márcia T. Tavares was omitted. The author is hereby added in the author byline and is associated with the first affiliation.

2019
Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles, Roma-Rodrigues, Catarina, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , International journal of nanomedicine, Volume 14, p.6843–6854, (2019) Abstract

Purpose: Progression of chronic myeloid leukemia (CML) is frequently associated with increased angiogenesis at the bone marrow mediated by exosomes. The capability of gold nanoparticles (AuNPs) functionalized with antiangiogenic peptides to hinder the formation of new blood vessels has been demonstrated in a chorioallantoic membrane (CAM) model. Methods: Exosomes of K562 CML cell line were isolated and their angiogenic effect assessed in a CAM model. AuNPs functionalized with antiangiogenic peptides were used to block the angiogenic effect of CML-derived exosomes, assessed by evaluation of expression levels of key modulators involved in angiogenic pathways - VEGFA, VEGFR1 (also known as FLT1) and IL8. Results: Exosomes isolated from K562 cells promoted the doubling of newly formed vessels associated with the increase of VEGFR1 expression. This is a concentration and timedependent effect. The AuNPs functionalized with antiangiogenic peptides were capable to block the angiogenic effect by modulating VEGFR1 associated pathway. Conclusion: Exosomes derived from blast cells are capable to trigger (neo)-angiogenesis, a key factor for the progression and spreading of cancer, in particular in CML. AuNPs functionalized with specific antiangiogenic peptides are capable to block the effect of the exosomes produced by malignant cells via modulation of the intrinsic VEGFR pathway. Together, these data highlight the potential of nanomedicine-based strategies against cancer proliferation.

2018
Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells, Pedrosa, Pedro, Mendes Rita, Cabral Rita, Martins {Luísa M. D. R. S. }, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Scientific Reports, dec, Volume 8, Number 1, (2018) Abstract

Despite great advances in the fight against cancer, traditional chemotherapy has been hindered by the dose dependent adverse side effects that reduce the usable doses for effective therapy. This has been associated to drug resistance in tumor cells that often cause relapse and therapy failure. These drawbacks have been tackled by combining different therapeutic regiments that prevent drug resistance while decreasing the chemotherapy dose required for efficacious ablation of cancer. In fact, new metallic compounds have been in a continuous development to extend the existing chemotherapy arsenal for these combined regimens. Here, we demonstrate that combination of a metallic compound (TS265), previously characterized by our group, with photothermy circumvents cells resistant to Doxorubicin (DOX). We first engendered a colorectal carcinoma cell line (HCT116) highly resistant to DOX, whose viability was diminished after administration of TS265. Cancer cell death was potentiated by challenging these cells with 14 nm spherical gold nanoparticles followed by laser irradiation at 532 nm. The combination of TS265 with photothermy lead to 65% cell death of the DOX resistant cells without impacting healthy cells. These results support the use of combined chemotherapy and photothermy in the visible spectrum as an efficient tool for drug resistant tumors.

2017
Current trends in molecular diagnostics of chronic myeloid leukemia, Vinhas, Raquel, Cordeiro Milton, Pedrosa Pedro, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Leukemia & Lymphoma, aug, Volume 58, Number 8, p.1791–1804, (2017) Abstract

Nearly 1.5 million people worldwide suffer from chronic myeloid leukemia (CML), characterized by the genetic translocation t(9;22)(q34;q11.2), involving the fusion of the Abelson oncogene (ABL1) with the breakpoint cluster region (BCR) gene. Early onset diagnosis coupled to current therapeutics allow for a treatment success rate of 90, which has focused research on the development of novel diagnostics approaches. In this review, we present a critical perspective on current strategies for CML diagnostics, comparing to gold standard methodologies and with an eye on the future trends on nanotheranostics.

2016
Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes, Vinhas, Raquel, Correia Claudia, Ribeiro Patricia, Lourenco Alexandra, {de Sousa} {Aida Botelho}, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, and Baptista {Pedro Miguel Ribeiro Viana} , Analytical and Bioanalytical Chemistry, jul, Volume 408, Number 19, p.5277–5284, (2016) Abstract

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible.

2015
Characterization of antiproliferative potential and biological targets of a copper compound containing 4'-phenyl terpyridine, Mendo, {Ana Soraia}, Figueiredo Sara, Roma-Rodrigues Catarina, Videira {Paula A. }, Ma Zhen, Diniz Mario, Larguinho Miguel, Costa P. M., Lima {Joao C. }, Pombeiro {Armando J. L. }, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , JBIC Journal of Biological Inorganic Chemistry, sep, Volume 20, Number 6, p.935–948, (2015) Abstract

Several copper complexes have been assessed as anti-tumor agents against cancer cells. In this work, a copper compound [Cu(H2O){OS(CH3)(2)}L](NO3)(2) incorporating the ligand 4'-phenyl-terpyridine antiproliferative activity against human colorectal, hepatocellular carcinomas and breast adenocarcinoma cell lines was determined, demonstrating high cytotoxicity. The compound is able to induce apoptosis and a slight delay in cancer cell cycle progression, probably by its interaction with DNA and induction of double-strand pDNA cleavage, which is enhanced by oxidative mechanisms. Moreover, proteomic studies indicate that the compound induces alterations in proteins involved in cytoskeleton maintenance, cell cycle progression and apoptosis, corroborating its antiproliferative potential.

2014
Characterization of genomic single nucleotide polymorphism via colorimetric detection using a single gold nanoprobe, Carlos, {Fabio Ferreira}, Flores Orfeu, Doria Goncalo, and Baptista Pedro , Analytical Biochemistry, nov, Volume 465, p.1–5, (2014) Abstract

Identification of specific nucleic acid sequences mediated by gold nanoparticles derivatized thiol-modified oligonucleotides (Au-nanoprobes) has been proven to be a useful tool in molecular diagnostics. Here, we demonstrate that, on optimization, detection may be simplified via the use of a single Au-nanoprobe to detect a single nucleotide polymorphism (SNP) in homo- or heterozygote condition. We validated this non-cross-linking approach through the analysis of 20 clinical samples using a single specific Au-nanoprobe for an SNP in the FTO (fat mass and obesity-associated) gene against direct DNA sequencing. Sensitivity, specificity, and limit of detection CLOD) were determined, and statistical differences were calculated by one-way analysis of variance (ANOVA) and a post hoc Tukey's test to ascertain whether there were any differences between Au-nanoprobe genotyped groups. For the first time, we show that the use of a single Au-nanoprobe can detect SNP for each genetic status (wild type, heterozygous, or mutant) with high degrees of sensitivity (87.50%) and specificity (91.67%). (c) 2014 Elsevier Inc. All rights reserved.

2013
Coupling an universal primer to SBE combined spectral codification strategy for single nucleotide polymorphism analysis, Cordeiro, Milton, Giestas Letícia, Lima {João C. }, and Baptista Pedro , Journal of Biotechnology, oct, Volume 168, Number 1, p.90–94, (2013) Abstract

We previously reported a strategy that combines Forster resonance energy transfer (FRET) based spectral codification with a single base extension (SBE) reaction for single nucleotide sequence discrimination in solution. This strategy is capable of unequivocally detect the allele variants present in solution. To extend the use of this tool to any locus of interest, it would be required the development of an universal approach capable of combining a sequence specific SBE primer to an universal sequence labeled and optimized for spectral codification.Here, we extend this concept to a general strategy by means of a labeled universal oligonucleotide primer (donor), a sequence specific primer that allows for incorporation of the complementary acceptor labeled ddNTP, which allows discrimination the allele variant in the sample via the unambiguous FRET signature of the donor/acceptor pair

Cancer Nanotechnology: Prospects for Cancer Diagnostics and Therapy - An Update on Novel Molecular Players, de Fernandes, {Maria Alexandra Núncio Carvalho Ramos}, and Baptista {Pedro Miguel Ribeiro Viana} , Current Cancer Therapy Reviews, jan, Volume 9, Number NA, p.1, (2013) Abstract

Nanotechnology has emerged as a {"}disruptive technology{"} that may provide researchers with new and innovativeways to diagnose, treat and monitor cancer. In fact, nanomedicine approaches have delivered several strategies, suchas new imaging agents, real-time assessments of therapeutic and surgical efficacy, multifunctional, targeted devices capableof bypassing biological barriers to target and silence specific pathways in tumours. Of particular interest, has been theincreased capability to deliver multiple therapeutic agents directly to bulk cancer cells and cancer stem cells that play acritical role in cancer growth and metastasis. These multifunctional targeted nanoconjugates are also capable of avoidingcancer resistance and monitor predictive molecular changes that open the path for preventive action against pre-cancerouscells, minimizing costs and incidence of relapses. A myriad of nanoconjugates with effective silencing and site-targetingmoieties can be developed by incorporating a diverse selection of targeting, diagnostic, and therapeutic components. Adiscussion of the integrative effort of nanotechnology systems with recent developments of biomolecular interactions incancer progression is clearly required. Here, we will update the state of the art related to the development and applicationsof nanoscale platforms and novel biomolecular players in cancer diagnosis, imaging and treatment.

The chemistry and biology of gold nanoparticle-mediated photothermal therapy: promises and challenges, Baptista, {Pedro Miguel Ribeiro Viana} , Nano LIFE, jan, Volume 03, Number 03, p.nr. 1330001, (2013) Abstract

Under laser radiation, cells labeled with gold nanoparticles (AuNPs) are believed to suffer thermal damage due to the transfer of the absorbed light from theAuNPsto the cells. This process, which involves complex mechanisms such as the rapid electron–phonon decay in theAuNPs, followed by phonon–phonon relaxation, culminates in the localized heating of both theAuNPsand the cells, setting the rational for the use of these nanostructures, under laser light, in cancer photothermal therapy (PTT). Here, we discuss the chemical and biological aspects of this promising new therapeutic approach, including the advantages over conventional cancer therapies and the challenges that scientists still need to overcome to progress toward translation research.Read More:http://www.worldscientific.com/doi/abs/10.1142/S179398441330001X

2012
Could gold nanoprobes be an important tool in cancer diagnostics?, Baptista, {Pedro Miguel Ribeiro Viana} , Expert Review Of Molecular Diagnostics, jan, Volume 12, Number 6, p.541–3, (2012) Abstract
n/a
Contribution of Efflux to the Emergence of Isoniazid and Multidrug Resistance in Mycobacterium tuberculosis., Machado, D., dos Couto {Isabel Maria Santos Leitão}, Perdigão João, Rodrigues Liliana, Portugal Isabel, Baptista Pedro, Veigas Bruno, Amaral Leonard, and Bettencourt {Miguel Viveiros} , PLoS ONE, apr, Volume 7, Number 4, (2012) Abstract
n/a
2011
Coupling single base extension to a spectral codification tool for increased throughput screening, Giestas, Letícia, Lima {João Carlos}, and Baptista {Pedro V. } , Journal of Biotechnology, jul, Volume 154, Number 4, p.199–204, (2011) Abstract

We report a new strategy that combines a Forster Resonance Energy Transfer (FRET) based spectral codification tool with a single base extension (SBE) reaction for rapid and medium-throughput analysis of single nucleotide polymorphisms (SNPs). This strategy is based on the spectral codification - a donor (fluorophore labeled probe complementary to the region adjacent to an SNP) is used to induce specific FRET signatures from an acceptor fluorophore revealing the SNP variant. Using an SBE reaction and differently labeled ddNTPs, we can directly question each donor probe and retrieve information about which allele variant is present at that locus. The potential of the method is demonstrated by application to simultaneous questioning of two loci in the same reaction tube. Following calibration with all possible combinations of FRET pairs, an evaluation algorithm was calibrated so as to optimize base calling and allow unequivocal allele scoring with more than 80% confidence (for two simultaneous loci being questioned, one homo-and one heterozygous). In conclusion, this spectral codification approach may constitute a solution towards increasing throughput capability of single base extension based assays.

2010
Colorimetric method and kit for the detection of specific nucleic acid sequences using metal nanoparticles functionalized with modified oligonucleotides, Tavares, {Jose Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Doria {Goncalo Maria Reimão Pinto De Franca}, and de Flores {Alcino Orfeu Leão} , mar, (2010) Abstract

The present invention relates to a colorimetric method for the detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences, through the aggregation of nanoparticles functionalized with modified oligonucleotides, induced by an increase of the medium's ionic strength. Another aspect of the present invention relates with the development of a kit based on the method of the present invention, allowing for a quick and easy detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences.

Colorimetric method and kit for the detection of specific nucleic acid sequences using metal nanoparticles functionalized with modified oligonucleotides, Tavares, {Jose Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Doria {Goncalo Maria Reimao Pinto De Franca}, and Flores {Alcino Orfeu De Leao} , jan, (2010) Abstract

The present invention relates to a colorimetric method for the detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences, through the aggregation of nanoparticles functionalized with modified oligonucleotides, induced by an increase of the medium's ionic strength. Another aspect of the present invention relates with the development of a kit based on the method of the present invention, allowing for a quick and easy detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences.

2009
Cancer nanotechnology - Prospects for cancer diagnostics and therapy, Baptista, {Pedro Viana} , Current Cancer Therapy Reviews, aug, Volume 5, Number 2, p.80–88, (2009) Abstract

Nanotechnology is a multidisciplinary field that brings together diverse fields of research and development such as engineering, biology, physics and chemistry. Formal definitions of nanotechnology refer to man-made devices, components and structures in the 1-100 nm range in at least one dimension. Advances in nanoscience are having a significant impact on many scientific fields, boosting the development of a variety of important technologies. Nanotechnology offers an unprecedented opportunity to interact with cancer cells in real time at the molecular and cellular scale. Because of their small size, nanoscale devices can readily interact with biomolecules on both the surface of cells and inside of cells. The concerted development of nanoscale devices, structures and components have provided essential breakthroughs in monitoring and fighting cancer at the earliest stages of the cancer process. Nanotechnology offers a wealth of tools that may provide researchers with new and innovative ways to diagnose and treat cancer - new imaging agents; systems for real-time assessments of therapeutic and surgical efficacy; multifunctional, targeted devices capable of bypassing biological barriers to deliver multiple therapeutic agents directly to cancer cells and tissues that play a critical role in cancer growth and metastasis; agents that can monitor predictive molecular changes allowing for preventive action against precancerous cells becoming malignant; minimizing costs for multiplex analysis. Nanotechnology, if properly integrated with conventional cancer research, may provide extraordinary prospects towards better diagnosis and effective therapy.

2008
Colorimetric method and kit for the detection of specific nucleic acid sequences using metal nanoparticles functionalized with modified oligonucleotides, Tavares, {Jose Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Doria {Goncalo Maria Reimao Pinto De Franca}, and Flores {Alcino Orfeu De Leao} , nov, (2008) Abstract

The present invention relates to a colorimetric method for the detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences, through the aggregation of nanoparticles functionalized with modified oligonucleotides, induced by an increase of the medium's ionic strength. Another aspect of the present invention relates with the development of a kit based on the method of the present invention, allowing for a quick and easy detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences.

Characterization of optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of nucleic acid sequences based on gold nanoparticle probes, Silva, {L. B. }, Baptista Pedro, Raniero Leandro, c}alo Doria Gon{\c, de Martins {Rodrigo Ferrão Paiva}, and Fortunato {Elvira Maria Correia} , Sensors and Actuators B: Chemical, jun, Volume 132, Number 2, p.508–511, (2008) Abstract
n/a