Publications

Export 59 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
H
Loureiro, J., T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B. F. Donovan, P. E. Hopkins, and I. Ferreira, "Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties", Appl. Phys. A, vol. 120, issue 4, pp. 1497–1502, 2015. AbstractDOI

The search for materials with suitable thermoelectric properties that are environmentally friendly and abundant led us to investigate p- and n-type hydrogenated nanocrystalline silicon (nc-Si:H) thin films, produced by plasma-enhanced chemical vapor deposition. The Seebeck coefficient and power factor were measured at room temperature showing optimized values of 512 µV K−1 and 3.6 × 10−5 W m−1 K−2, for p-type, and −188 µV K−1 and 2.2 × 10−4 W m−1 K−2, for n-type thin films. The thermoelectric output power of one nc-Si:H pair of both n- and p-type materials is ~91 µW per material cm3, for a thermal gradient of 8 K. The output voltage and current values show a linear dependence with the number of pairs interconnected in series and/or parallel and show good integration performance.

I
Sousa, D. M., J. C. Lima, and I. Ferreira, "Image Recording and Processing Chemical Synthesis: Method Description and Demonstration", Chemistry‐Methods, vol. 1, pp. 157-161, 2021.
Loureiro, J., T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B. F. Donovan, P. E. Hopkins, and I. Ferreira, "Improved thermoelectric properties of nanocrystalline hydrogenated silicon thin films by post-deposition thermal annealing", Thin Solid Films, vol. 642, pp. 276-280, 2017. AbstractDOI

The influence of post-deposition thermal annealing on the thermoelectric properties of n-and p-type nanocrystalline hydrogenated silicon thin films, deposited by plasma enhanced chemical vapour deposition, was studied in this work. The Power Factor of p-type films was improved from 7× 10− 5 to 4× 10− 4 W/(mK 2) as the annealing temperature, under vacuum, increased up to 400° C while for n-type films it has a minor influence. Optimized Seebeck coefficient values of 460 μV/K and− 320 μV/K were achieved for p-and n-type films, respectively, with crystalline size in the range of 10 nm, leading to remarkable low thermal conductivity values (< 10 Wm− 1. K− 1) at room temperature.

Soares, P. I. P., C. A. T. Laia, A. Carvalho, L. C. J. Pereira, J. T. Coutinho, I. M. M. Ferreira, C. M. M. Novo, and J. P. Borges, "Iron oxide nanoparticles stabilized with a bilayer of oleic acid for magnetic hyperthermia and MRI applications", Appl Surf Sci, vol. 383, pp. 240-247, 2016. AbstractDOI

Iron oxide nanoparticles (Fe3O4, IONPs) are promising candidates for several biomedical applications such as magnetic hyperthermia and as contrast agents for magnetic resonance imaging (MRI). However, their colloidal stability in physiological conditions hinders their application requiring the use of biocompatible surfactant agents. The present investigation focuses on obtaining highly stable IONPs, stabilized by the presence of an oleic acid bilayer. Critical aspects such as oleic acid concentration and pH were optimized to ensure maximum stability. NPs composed of an iron oxide core with an average diameter of 9 nm measured using transmission electron microscopy (TEM) form agglomerates with an hydrodynamic diameter of around 170 nm when dispersed in water in the presence of an oleic acid bilayer, remaining stable (zeta potential of −120 mV). Magnetic hyperthermia and the relaxivities measurements show high efficiency at neutral pH which enables their use for both magnetic hyperthermia and MRI.

L
Esperança Garcia, D. M., A. S. Taborda Martins Pereira, A. C. Almeida, U. Santana Roma, A. Ben Aissa Soler, P. D. Lacharmoise, I. M. M. das Ferreira, and C. C. D. Simao, "Large-Area Paper Batteries with Ag and Zn/Ag Screen-Printed Electrodes", ACS Omega, vol. 4, pp. 16781−16788, 2019. acsomega.9b01545.pdf
Mendes, D., D. Sousa, A. C. Cerdeira, L. C. J. Pereira, A. Marques, J. Murta-Pina, A. Pronto, and I. Ferreira, "Low-cost and high-performance 3D printed YBCO superconductors", Ceramics International, vol. 47, pp. 381-387, 2021.
M
Sousa, D. M., W. Chiappim, J. P. Leitão, J. C. Lima, and I. Ferreira, "Microwave synthesis of silver sulfide and silver nanoparticles: light and time influence", ACS omega, vol. 5, pp. 12877-12881, 2020.
Picado, A., S. M. Paixão, L. Moita, L. Silva, M. S. Diniz, J. Lourenço, I. Peres, L. Castro, J. B. Correia, J. Pereira, I. Ferreira, A. P. A. Matos, P. Barquinha, and E. Mendonça, "A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles", Front. Env. Sci. Eng., vol. 9, issue 5, pp. 793–803, 2015. AbstractDOI

The new properties of engineered nanoparticles drive the need for new knowledge on the safety, fate, behavior and biologic effects of these particles on organisms and ecosystems. Titanium dioxide nanoparticles have been used extensively for a wide range of applications, e.g, self-cleaning surface coatings, solar cells, water treatment agents, topical sunscreens. Within this scenario increased environmental exposure can be expected but data on the ecotoxicological evaluation of nanoparticles are still scarce. The main purpose of this work was the evaluation of effects of TiO2 nanoparticles in several organisms, covering different trophic levels, using a battery of aquatic assays. Using fish as a vertebrate model organism tissue histological and ultrastructural observations and the stress enzyme activity were also studied. TiO2 nanoparticles (Aeroxide® P25), two phase composition of anatase (65%) and rutile (35%) with an average particle size value of 27.6±11 nm were used. Results on the EC50 for the tested aquatic organisms showed toxicity for the bacteria, the algae and the crustacean, being the algae the most sensitive tested organism. The aquatic plant Lemna minor showed no effect on growth. The fish Carassius auratus showed no effect on a 21 day survival test, though at a biochemical level the cytosolic Glutathione-S-Transferase total activity, in intestines, showed a general significant decrease (p<0.05) after 14 days of exposure for all tested concentrations. The presence of TiO2 nanoparticles aggregates were observed in the intestine lumen but their internalization by intestine cells could not be confirmed.

N
Loureiro, J., J. R. Santos, A. Nogueira, F. Wyczisk, L. Divay, S. Reparaz, F. Alzina, C. M. S. Torres, J. Cuffe, F. Montemor, R. Martins, and I. Ferreira, "Nanostructured p-type Cr/V2O5 thin films with boosted thermoelectric properties", J. Mater. Chem. A, vol. 2, issue 18, pp. 6456-6462, 2014. AbstractDOI

The urgent need for non-toxic and abundant thermoelectric materials has become a significant motivation to improve the figures of merit of metal oxides in order to remove the barrier towards their widespread use for thermoelectric applications. Here we show the influence of a Cr layer in boosting the thermoelectric properties of vanadium pentoxide (V2O5) thin films, deposited by thermal evaporation and annealed at 500 °C. The Cr to V2O5 thickness ratio controls the morphological and thermoelectric properties of the thin films produced. The optimized Seebeck coefficient and power factor values at room temperature are +50 μV K−1 and 7.9 × 10−4 W m−1 K−2, respectively. The nanograin structure of the films is responsible for an improvement in the electrical conductivity up to 3 × 105 (Ω m)−1 with a typical thermal conductivity of 1.5 W m−1 K−1. These results combine to yield promising p-type thermoeletric CrV2O5 thin films with a ZT of 0.16 at room temperature.

Bianchi, C., A. C. Marques, R. C. da Silva, T. Calmeiro, and I. Ferreira, "Near infrared photothermoelectric effect in transparent AZO/ITO/Ag/ITO thin films", Scientific reports, vol. 11, pp. 1-11, 2021.