Export 44 results:
Sort by: Author Title Type [ Year  (Desc)]
Marques, A. C., D. Miglietta, G. Gaspar, A. C. Baptista, A. Gaspar, A. Perdigão, I. Soares, C. Bianchi, D. Sousa, B. M. Morais Faustino, V. S. Amaral, T. Santos, A. P. Gonçalves, R. C. da Silva, F. Giorgis, and I. Ferreira, " Synthesis of thermoelectric magnesium-silicide pastes for 3D printing, electrospinning and low-pressure spray", Materials for Renewable and Sustainable Energy, pp. 8-21, 2019.
Cristovão, A. F., D. Sousa, F. Silvestre, I. Ropio, A. Gaspar, C. Henriques, A. Velhinho, A. C. Baptista, M. Faustino, and I. Ferreira, "Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties", 3D Print Med, vol. 5, pp. 12, 2019.
Esteves, C., G. M. C. Santos, C. Alves, S. I. C. J. Palma, A. R. Porteira, H. M. A. Costa, V. D. Alves, B. M. M. Faustino, I. Ferreira, and H. Gamboa, "Effect of film thickness in gelatine hybrid gels for artificial olfaction", Materials Today Bio, vol. 1, pp. 100002, 2019.
Ferreira, F., I. Ferreira, E. Camacho, F. Lopes, A. C. Marques, and A. Velhinho, "Graphene oxide reinforced aluminium matrix nanostructured composited fabricated by accumulative roll bonding", Composites Part B: Engineering, vol. 164, pp. 265-271, 2019.
Coroa, J., B. M. Morais Faustino, A. C. Marques, C. Bianchi, T. Koskinen, T. Juntunen, I. Tittonen, and I. Ferreira, "Highly transparent copper iodide thin film thermoelectric generator on a flexible substrate", RSC Advances, vol. 9, pp. 35384, 2019.
Esperança Garcia, D. M., A. S. Taborda Martins Pereira, A. Carranca Almeida, U. Santana Roma, A. Ben Aissa Soler, P. D. Lacharmoise, I. M. das Mercês Ferreira, and C. Custódio Delgado Simão, "Large-Area Paper Batteries with Ag and Zn/Ag Screen-Printed Electrodes Diogo Miguel Esperança GarciaAna Sofia Taborda Martins PereiraAntónio Carranca Almeida", ACS Omega, vol. 4, pp. 16781−16788, 2019.
Marques, A. C., J. Faria, P. Perdigão, B. M. M. Faustino, R. Ritasalo, K. Costabello, R. C. da Silva, and I. Ferreira, "Stability under humidity, UV-light and bending of AZO films deposited by ALD on Kapton", Scientific Reports, vol. 9, pp. 17919, 2019.
Ropio, I., A. C. Baptista, J. P. Nobre, J. Correia, F. Belo, S. Taborda, M. B. M. Faustino, J. P. Borges, A. Kovalenko, and I. Ferreira, "Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes", Org Electron, 2018. AbstractDOI

A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.

Baptista, A. C., I. Ropio, B. Romba, J. P. Nobre, C. Henriques, J. C. Silva, J. I. Martins, J. P. Borges, and I. Ferreira, "Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries", J Mater Chem A, vol. 6, issue 1, pp. 256-265, 2018. AbstractDOI

A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and the support of the electrodes. Polymer composites of polypyrrole (PPy) and polyaniline (PANI) with cellulose acetate (CA) electrospun matrix were produced by in situ chemical oxidation of pyrrole and aniline on the CA fibers. The structure (CA/PPy|CA|CA/PANI) generated a power density of 1.7 mW g−1 in the presence of simulated biological fluids, which is a new and significant contribution to the domain of medical batteries and fully organic devices for biomedical applications.

Faustino, B. M. M., D. Gomes, J. Faria, T. Juntunen, G. Gaspar, C. Bianchi, A. Almeida, A. C. Marques, I. Tittonen, and I. Ferreira, "CuI p-type thin films for highly transparent thermoelectric pn modules", Sci Rep, vol. 8, issue 1, pp. 6867-6867, 2018. AbstractDOI

Developments in thermoelectric (TE) transparent p-type materials are scarce and do not follow the trend of the corresponding n-type materials – a limitation of the current transparent thermoelectric devices. P-type thermoelectric thin films of CuI have been developed by three different methods in order to maximise optical transparency (>70% in the visible range), electrical (σ = 1.1 × 104 Sm−1) and thermoelectric properties (ZT = 0.22 at 300 K). These have been applied in the first planar fully transparent p-n type TE modules where gallium-doped zinc oxide (GZO) thin films were used as the n-type element and indium thin oxide (ITO) thin films as electrodes. A thorough study of power output in single elements and p-n modules electrically connected in series and thermally connected in parallel is inclosed. This configuration allows for a whole range of highly transparent thermoelectric applications.