Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties

Citation:
Loureiro, J., T. Mateus, S. Filonovich, M. Ferreira, J. Figueira, A. Rodrigues, B. F. Donovan, P. E. Hopkins, and I. Ferreira, "Hydrogenated nanocrystalline silicon thin films with promising thermoelectric properties", Appl. Phys. A, vol. 120, issue 4, pp. 1497–1502, 2015.

Abstract:

The search for materials with suitable thermoelectric properties that are environmentally friendly and abundant led us to investigate p- and n-type hydrogenated nanocrystalline silicon (nc-Si:H) thin films, produced by plasma-enhanced chemical vapor deposition. The Seebeck coefficient and power factor were measured at room temperature showing optimized values of 512 µV K−1 and 3.6 × 10−5 W m−1 K−2, for p-type, and −188 µV K−1 and 2.2 × 10−4 W m−1 K−2, for n-type thin films. The thermoelectric output power of one nc-Si:H pair of both n- and p-type materials is ~91 µW per material cm3, for a thermal gradient of 8 K. The output voltage and current values show a linear dependence with the number of pairs interconnected in series and/or parallel and show good integration performance.

Related External Link