xtal

Duarte, M, Alves VD, Correia M, Caseiro C, Ferreira LMA, Romão MJ, Carvalho AL, Najmudin S, Bayer EA, Fontes CMGA, Bule P.  2023.  Structure-function studies can improve binding affinity of cohesin-dockerin interactions for multi-protein assemblies, 2023. 224:55-67. AbstractWebsite

The cellulosome is an elaborate multi-enzyme structure secreted by many anaerobic microorganisms for the efficient degradation of lignocellulosic substrates. It is composed of multiple catalytic and non-catalytic components that are assembled through high-affinity protein-protein interactions between the enzyme-borne dockerin (Doc) modules and the repeated cohesin (Coh) modules present in primary scaffoldins. In some cellulosomes, primary scaffoldins can interact with adaptor and cell-anchoring scaffoldins to create structures of increasing complexity. The cellulosomal system of the ruminal bacterium, Ruminococcus flavefaciens, is one of the most intricate described to date. An unprecedent number of different Doc specificities results in an elaborate architecture, assembled exclusively through single-binding-mode type-III Coh-Doc interactions. However, a set of type-III Docs exhibits certain features associated with the classic dual-binding mode Coh-Doc interaction. Here, the structure of the adaptor scaffoldin-borne ScaH Doc in complex with the Coh from anchoring scaffoldin ScaE is described. This complex, unlike previously described type-III interactions in R. flavefaciens, was found to interact in a dual-binding mode. The key residues determining Coh recognition were also identified. This information was used to perform structure-informed protein engineering to change the electrostatic profile of the binding surface and to improve the affinity between the two modules. The results show that the nature of the residues in the ligand-binding surface plays a major role in Coh recognition and that Coh-Doc affinity can be manipulated through rational design, a key feature for the creation of designer cellulosomes or other affinity-based technologies using tailored Coh-Doc interactions.

Santos, MFA, Sciortino G, Correia I, Fernandes ACP, Santos-Silva T, Pisanu F, Garribba E, Pessoa JC.  2022.  Binding of VIVO2+, VIVOL, VIVOL2 and VVO2L Moieties to Proteins: X-ray/Theoretical Characterization and Biological Implications, 2022. Chemistry – A European JournalChemistry – A European Journal. 28(40):e202200105.: John Wiley & Sons, Ltd AbstractWebsite

Abstract Vanadium compounds have frequently been proposed as therapeutics, but their application has been hampered by the lack of information on the different V-containing species that may form and how these interact with blood and cell proteins, and with enzymes. Herein, we report several resolved crystal structures of lysozyme with bound VIVO2+ and VIVOL2+, where L=2,2?-bipyridine or 1,10-phenanthroline (phen), and of trypsin with VIVO(picolinato)2 and VVO2(phen)+ moieties. Computational studies complete the refinement and shed light on the relevant role of hydrophobic interactions, hydrogen bonds, and microsolvation in stabilizating the structure. Noteworthy is that the trypsin?VVO2(phen) and trypsin?VIVO(OH)(phen) adducts correspond to similar energies, thus suggesting a possible interconversion under physiological/biological conditions. The obtained data support the relevance of hydrolysis of VIV and VV complexes in the several types of binding established with proteins and the formation of different adducts that might contribute to their pharmacological action, and significantly widen our knowledge of vanadium?protein interactions.

Trovão, F, Correia VG, Lourenço FM, Ribeiro DO, Carvalho AL, Palma AS, Pinheiro BA.  2023.  The structure of a Bacteroides thetaiotamicron carbohydrate-binding module provides new insight into the recognition of complex pectic polysaccharides by the human microbiome, 2023. :100084. AbstractWebsite

TheBacteroides thetaiotaomicronhas developed a consortium of enzymes capable of overcoming steric constraints and degrading, in a sequential manner, the complex rhamnogalacturonan II (RG-II) polysaccharide. BT0996 protein acts in the initial stages of the RGII depolymerisation, where its two catalytic modules remove the terminal monosaccharides from RG-II side chains A and B. BT0996 is modular and has three putative carbohydrate-binding modules (CBMs) for which the roles in the RG-II degradation are unknown. Here, we present the characterisation of themoduleat the C-terminal domain, which we designated BT0996C. The high-resolution structure obtained by X-ray crystallography reveals that the protein displays a typical β-sandwich fold with structural similarity to CBMs assigned to families 6 and 35. The distinctive features are: 1) the presence of several charged residues at the BT0996-C surface creating a large, broad positive lysine-rich patch that encompasses the putative binding site; and 2) the absence of the highly conserved binding-site signatures observed in CBMs from families 6 and 35, such as region A tryptophan and region C asparagine. These findings hint at a binding mode of BT0996-C not yet observed in its homologues. In line with this, carbohydrate microarrays and microscale thermophoresis show the ability of BT0996-C to bind α1-4-linked polygalacturonic acid, and that electrostatic interactions are essential for the recognition of the anionic polysaccharide. The results support the hypothesis that BT0996-C may have evolved to potentiate the action of BT0996 catalytic modules on the complex structure of RG-II by binding to the polygalacturonic acid backbone sequence.

Congratulations to Alicia Candeias!

Congratulations to our student Alicia Candeias for successfully defending her MSc thesis in Biochemistry at NOVA School of Science and Technology.
Her thesis entitled "A molecular view on how a commensal bacterium thrives in the human gut" was supervised by Ana Luísa Carvalho, from XTAL, and Angelina Sá Palma, from the GlycoLab.

Congratulations, Doctor Francisco!

Congratulations to Francisco Leisico for successfully concluding his PhD Thesis, today!
His thesis is entitled "Unravelling the reaction mechanism of glutamate amidation in Staphylococcus aureus peptidoglycan", supervised by Teresa Santos-Silva and Maria João Romão.
Our best wishes for your future, Francisco!
Here's a photo of the nice, in person, lunch party!
Moreira, IP, Esteves C, Palma SICJ, Ramou E, Carvalho ALM, Roque ACA.  2022.  Synergy between silk fibroin and ionic liquids for active gas-sensing materials. Materials Today Bio. :100290. AbstractWebsite

Silk fibroin is a biobased material with excellent biocompatibility and mechanical properties, but its use in bioelectronics is hampered by the difficult dissolution and low intrinsic conductivity. Some ionic liquids are known to dissolve fibroin but removed after fibroin processing. However, ionic liquids and fibroin can cooperatively give rise to functional materials, and there are untapped opportunities in this combination. The dissolution of fibroin, followed by gelation, in designer ionic liquids from the imidazolium chloride family with varied alkyl chain lengths (2–10 carbons) is shown here. The alkyl chain length of the anion has a large impact on fibroin secondary structure which adopts unconventional arrangements, yielding robust gels with distinct hierarchical organization. Furthermore, and due to their remarkable air-stability and ionic conductivity, fibroin ionogels are exploited as active electrical gas sensors in an electronic nose revealing the unravelled possibilities of fibroin in soft and flexible electronics.

Barroca-Ferreira, J, Cruz-Vicente P, Santos MFA, Rocha SM, Santos-Silva T, Maia CJ, Passarinha LA.  2021.  Enhanced Stability of Detergent-Free Human Native STEAP1 Protein from Neoplastic Prostate Cancer Cells upon an Innovative Isolation Procedure. International Journal of Molecular Sciences. 22, Number 18 AbstractWebsite

Background: The STEAP1 is a cell-surface antigen over-expressed in prostate cancer, which contributes to tumor progression and aggressiveness. However, the molecular mechanisms underlying STEAP1 and its structural determinants remain elusive. Methods: The fraction capacity of Butyl- and Octyl-Sepharose matrices on LNCaP lysates was evaluated by manipulating the ionic strength of binding and elution phases, followed by a Co-Immunoprecipitation (Co-IP) polishing. Several potential stabilizing additives were assessed, and the melting temperature (Tm) values ranked the best/worst compounds. The secondary structure of STEAP1 was identified by circular dichroism. Results: The STEAP1 was not fully captured with 1.375 M (Butyl), in contrast with interfering heterologous proteins, which were strongly retained and mostly eluted with water. This single step demonstrated higher selectivity of Butyl-Sepharose for host impurities removal from injected crude samples. Co-IP allowed recovering a purified fraction of STEAP1 and contributed to unveil potential physiologically interacting counterparts with the target. A Tm of  55 °C was determined, confirming STEAP1 stability in the purification buffer. A predominant α-helical structure was identified, ensuring the protein’s structural stability. Conclusions: A method for successfully isolating human STEAP1 from LNCaP cells was provided, avoiding the use of detergents to achieve stability, even outside a membrane-mimicking environment.

Ali, MS, Muthukumaran J, Jain M, Santos-Silva T, Al-Lohedan HA, Al-Shuail NS.  2021.  Molecular interactions of cefoperazone with bovine serum albumin: Extensive experimental and computational investigations, 2021. 337:116354. AbstractWebsite

We investigated the binding of the cephalosporin-class drug cefoperazone (CFP) with bovine serum albumin (BSA) using spectroscopic techniques and in silico methods. The aim of this study was to (i) emphasize the importance of correcting for the inner filter effect in this type of study and (ii) understand the binding mechanism of CFP with BSA by addressing protein conformation and plausible binding sites. Formation of the complex was confirmed by UV–visible spectroscopy. Quenching of BSA fluorescence in the presence of CFP was also observed. Because of the high absorption of CFP in the fluorescence emission range of BSA, the fluorescence emission spectra were corrected for the inner filter effect. Fluorescence emission was studied at excitation wavelengths of 280 and 295 nm. The uncorrected data showed a significant contribution of tyrosine at the excitation wavelength of 280 nm; however, after correction, this contribution became negligible. The static-type mechanism was found to be involved in quenching, with almost 1:1 binding between BSA and CFP. Hydrogen bonding and hydrophobic forces were found to dominate the protein–ligand interactions with a slight decrease in the α-helical contents. Synchronous fluorescence spectral data (at Δλ = 15 and 60 nm) were also corrected for the inner filter effect, with the results being similar to those of excitation at 280 and 295 nm. Molecular docking and molecular dynamics (MD) simulation results suggest that, apart from the two known drug binding sites (drug site I and II), one putative binding site (binding site III) located between BSA domains 1 and 3 was also possible for CFP. MD simulations of the previously reported drug binding sites (drug site I and II) and putative binding site III revealed that binding site III showed excellent binding profiles and could be a target for future research related to BSA-drug binding.

Duarte, M, Viegas A, Alves VD, Prates JAM, Ferreira LMA, Najmudin S, Cabrita EJ, Carvalho AL, Fontes CMGA, Bule P.  2021.  A dual cohesin–dockerin complex binding mode in Bacteroides cellulosolvens contributes to the size and complexity of its cellulosome. Journal of Biological Chemistry. 296:100552. AbstractWebsite

The Cellulosome is an intricate macromolecular protein complex that centralizes the cellulolytic efforts of many anaerobic microorganisms through the promotion of enzyme synergy and protein stability. The assembly of numerous carbohydrate processing enzymes into a macromolecular multiprotein structure results from the interaction of enzyme-borne dockerin modules with repeated cohesin modules present in noncatalytic scaffold proteins, termed scaffoldins. Cohesin–dockerin (Coh-Doc) modules are typically classified into different types, depending on structural conformation and cellulosome role. Thus, type I Coh-Doc complexes are usually responsible for enzyme integration into the cellulosome, while type II Coh-Doc complexes tether the cellulosome to the bacterial wall. In contrast to other known cellulosomes, cohesin types from Bacteroides cellulosolvens, a cellulosome-producing bacterium capable of utilizing cellulose and cellobiose as carbon sources, are reversed for all scaffoldins, i.e., the type II cohesins are located on the enzyme-integrating primary scaffoldin, whereas the type I cohesins are located on the anchoring scaffoldins. It has been previously shown that type I B. cellulosolvens interactions possess a dual-binding mode that adds flexibility to scaffoldin assembly. Herein, we report the structural mechanism of enzyme recruitment into B. cellulosolvens cellulosome and the identification of the molecular determinants of its type II cohesin–dockerin interactions. The results indicate that, unlike other type II complexes, these possess a dual-binding mode of interaction, akin to type I complexes. Therefore, the plasticity of dual-binding mode interactions seems to play a pivotal role in the assembly of B. cellulosolvens cellulosome, which is consistent with its unmatched complexity and size.

Best Poster Award at Diamond-CCP4 Workshop to Filipa Trovão!

Congratulations to our PhD student Filipa Trovão for winning the Best Poster Award at the Diamond-CCP4 Data Collection and Structure Solution Workshop (https://www.ccp4.ac.uk/schools/DLS-2021)!

The workshop covered all aspects of 3D structure solution, from data collection through to phasing, refinement and validation, lectured by exp

Public presentation of the PhD Thesis Plan of Filipa Trovão

Today, Filipa Trovão, a joint PhD student of Angelina Palma (GlycoLab), Ana Luísa Carvalho (XTAL) and Yan Liu (Imperial College London), has publicly presented the Thesis Plan of her PhD work.

Well done, Filipa! Your presentation was very clear and the Thesis Advisory Committee members (Paula Videira and Pedro Bule) acknowledged that your work is on the right track!

In the European Researchers' Night 2021

As usual, we are part of this great celebration of all those that work and love science!

https://noitedosinvestigadores.org/programa-online/

This year, the event is dedicated to Climate and 3 of our projects meet this subject perfectly.

Goodfellow, BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis J-M, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL.  2021.  The SOUL family of heme-binding proteins: Structure and function 15 years later, 2021. 448:214189. AbstractWebsite

The SOUL, or heme-binding protein HBP/SOUL, family represents a group of evolutionary conserved putative heme-binding proteins that contains a number of members in animal, plant andbacterial species. The structures of the murine form of HEBP1, or p22HBP, and the human form of HEBP2, or SOUL, have been determined in 2006 and 2011 respectively. In this work we discuss the structures of HEBP1 and HEBP2 in light of new X-ray data for heme bound murine HEBP1. The interaction between tetrapyrroles and HEBP1, initially proven to be hydrophobic in nature, was thought to also involve electrostatic interactions between heme propionate groups and positively charged amino acid side chains. However, the new X-ray structure, and results from murine HEBP1 variants and human HEBP1, confirm the hydrophobic nature of the heme-HEBP1 interaction, resulting in Kd values in the low nanomolar range, and rules out any electrostatic stabilization. Results from NMR relaxation time measurements for human HEBP1 describe a rigid globular protein with no change in motional regime upon heme binding. X-ray structures deposited in the PDB for human HEBP2 are very similar to each other and to the new heme-bound murine HEBP1 X-ray structure (backbone rmsd ca. 1 Å). Results from a HSQC spectrum centred on the histidine side chain Nδ-proton region for HEBP2 confirm that HEBP2 does not bind heme via H42 as no chemical shift differences were observed upon heme addition for backbone NH and Nδ protons. A survey of the functions attributed to HEBP1 and HEBP2 over the last 20 years span a wide range of cellular pathways. Interestingly, many of them are specific to higher eukaryotes, particularly mammals and a potential link between heme release under oxidative stress and human HEBP1 is also examined using recent data. However, at the present moment, trying to relate function to the involvement of heme or tetrapyrrole binding, specifically, makes little sense with our current biological knowledge and can only be applied to HEBP1, as HEBP2 does not interact with heme. We suggest that it may not be justified to call this very small family of proteins, heme-binding proteins. The family may be more correctly called “the SOUL family of proteins related to cellular fate” as, even though only HEBP1 binds heme tightly, both proteins may be involved in cell survival and/or proliferation.

loading