Publications

Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
E
Larguinho, Miguel, Daniela Correia, Mario S. Diniz, and Pedro V. Baptista. "Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels." Journal of Nanoparticle Research 16 (2014). Abstract

n/a

Roma-Rodrigues, Catarina, Alexandra R. Fernandes, and Pedro Viana Baptista. "Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells." Biomed Research International (2014). Abstract

n/a

Bernacka-Wojcik, Iwona, Susana Ribeiro, Pawel Jerzy Wojcik, Pedro Urbano Alves, Tito Busani, Elvira Fortunato, Pedro Viana Baptista, Jose Antonio Covas, Hugo Aguas, Loic Hilliou, and Rodrigo Martins. "Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length." Rsc Advances 4 (2014): 56013-56025. Abstract

n/a

Rosa, J. P., J. C. Lima, and P. V. Baptista. "Experimental photophysical characterization of fluorophores in the vicinity of gold nanoparticles." Nanotechnology 22 (2011). Abstract

n/a

Raposo, L. R., A. Silva, D. Silva, C. Roma-Rodrigues, M. Espadinha, P. V. Baptista, M. M. M. Santos, and A. R. Fernandes. "Exploiting the antiproliferative potential of spiropyrazoline oxindoles in a human ovarian cancer cell line." Bioorg Med Chem 30 (2020): 115880. AbstractWebsite

n/a

F
Larguinho, Miguel, José L. Capelo, and Pedro V. Baptista. "Fast Nucleotide identification using gold nanoparticle-based surface assisted laser desorption/ionisation." Talanta 105 (2013): 417-421.
Oliveira, B., B. Veigas, A. R. Fernandes, H. Águas, R. Martins, E. Fortunato, and P. V. Baptista. "Fast Prototyping Microfluidics: Integrating Droplet Digital Lamp for Absolute Quantification of Cancer Biomarkers." Sensors (Basel) 20 (2020). AbstractWebsite

n/a

Veigas, Bruno, Elvira Fortunato, and Pedro V. Baptista. "Field Effect Sensors for Nucleic Acid Detection: Recent Advances and Future Perspectives." Sensors 15 (2015): 10380-10398. Abstract

n/a

G
Fernandes, Alexandra R., and Pedro V. Baptista. "Gene Silencing Using Multifunctionalized Gold Nanoparticles for Cancer Therapy." Methods in molecular biology (Clifton, N.J.) 1530 (2017): 319-336. Abstract

n/a

Roma-Rodrigues, C., L. Rivas-García, P. V. Baptista, and A. R. Fernandes. "Gene Therapy in Cancer Treatment: Why Go Nano?" Pharmaceutics 12 (2020). AbstractWebsite

n/a

Giestas, Letícia, Vesselin Petrov, Pedro V. Baptista, and João Carlos Lima. "General FRET-based coding for application in multiplexing methods." Photochem. Photobiol. Sci. 8 (2009): 1130-1138.
Oliveira, Hélder, Catarina Roma-Rodrigues, Ana Santos, Bruno Veigas, Natércia Brás, Ana Faria, Conceição Calhau, Victor de Freitas, Pedro V. Baptista, Nuno Mateus, Alexandra R. Fernandes, and Iva Fernandes. "GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach." Scientific Reports 9 (2019): 789. AbstractWebsite

Anthocyanins may protect against a myriad of human diseases. However few studies have been conducted to evaluate their bioavailability so their absorption mechanism remains unclear. This study aimed to evaluate the role of two glucose transporters (GLUT1 and GLUT3) in anthocyanins absorption in the human gastric epithelial cells (MKN-28) by using gold nanoparticles to silence these transporters. Anthocyanins were purified from purple fleshed sweet potatoes and grape skin. Silencing of GLUT1 and/or GLUT3 mRNA was performed by adding AuNP@GLUT1 and/or AuNP@GLUT3 to MKN-28 cells. Downregulation of mRNA expression occurred concomitantly with the reduction in protein expression. Malvidin-3-O-glucoside (Mv3glc) transport was reduced in the presence of either AuNP@GLUT1 and AuNP@GLUT3, and when both transporters were blocked simultaneously. Peonidin-3-(6′-hydroxybenzoyl)-sophoroside-5-glucoside (Pn3HBsoph5glc) and Peonidin-3-(6′-hydroxybenzoyl-6″-caffeoyl)-sophoroside-5-glucoside (Pn3HBCsoph5glc) were assayed to verify the effect of the sugar moiety esterification at glucose B in transporter binding. Both pigments were transported with a lower transport efficiency compared to Mv3glc, probably due to steric hindrance of the more complex structures. Interestingly, for Pn3HBCsoph5glc although the only free glucose is at C5 and the inhibitory effect of the nanoparticles was also observed, reinforcing the importance of glucose on the transport regardless of its position or substitution pattern. The results support the involvement of GLUT1 and GLUT3 in the gastric absorption of anthocyanins.

Larguinho, Miguel, and Pedro V. Baptista. "Gold and silver nanoparticles for clinical diagnostics - from genomics to proteomics." J. Proteomics 75 (2012): 2811-2823.
Pedrosa, Pedro, and Pedro Viana Baptista. "Gold and silver nanoparticles for diagnostics of infection." In Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases, edited by Mahendra Rai and Kateryna Kon, 1-18. Elsevier, 2015. Abstract

Nanotechnology in Diagnosis, Treatment and Prophylaxis of Infectious Diseases delivers comprehensive coverage of the application of nanotechnology to pressing problems in infectious disease.
This text equips readers with cutting-edge knowledge of promising developments and future prospects in nanotechnology, paying special attention to microbes that are now resistant to conventional antibiotics, a concerning problem in modern medicine.
Readers will find a thorough discussion of this new approach to infectious disease treatment, including the reasons nanotechnology presents a promising avenue for the diagnosis, treatment, and prophylaxis of infectious diseases.

Cordeiro, Milton, Lara Carvalho, Joana Silva, Leonor Saúde, Alexandra R. Fernandes, and Pedro V. Baptista. "Gold nanobeacons for tracking gene silencing in Zebrafish." Nanomaterials (2017). AbstractWebsite

The use of gold nanoparticles for effective gene silencing has demonstrated its potential as a tool for gene expression experiments and for the treatment of several diseases. Here, we used a gold nanobeacon designed to specifically silence the enhanced green fluorescence protein (EGFP) mRNA in embryos of a fli-EGFP transgenic zebrafish line, while simultaneously allowing the tracking and localization of the silencing events via the beacon’s emission. Fluorescence imaging measurements demonstrated a decrease of the EGFP emission with a concomitant increase in the fluorescence of the Au-nanobeacon. Furthermore, microinjection of the Au-nanobeacon led to a negligible difference in mortality and malformations in comparison to the free oligonucleotide, indicating that this system is a biocompatible platform for the administration of gene silencing moieties. Together, these data illustrate the potential of Au-nanobeacons as tools for in vivo zebrafish gene modulation with low toxicity which may be used towards any gene of interest.

Baptista, Pedro Viana. "Gold nanobeacons: A potential nanotheranostics platform." Nanomedicine 9 (2014): 2247-50.Website
Mendes, Rita, Alexandra R. Fernandes, and Pedro V. Baptista. "Gold Nanoparticle Approach to the Selective Delivery of Gene Silencing in Cancer—The Case for Combined Delivery?" Genes 3 (2017): 94. AbstractWebsite

Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics

Gaspar, Jorge Francisco, Pedro Viana Baptista, and José Rueff. "Gold nanoparticle based systems in genetics." Current Pharmacogenomics 5 (2007): 39-47.
Koziol-Montewka, M., J. Paluch-Oles, and P. Baptista. Gold nanoparticle probe-based diagnostic system for rapid and sensitive detection of Mycobacterium tuberculosis In Congress of Clinical Microbiology and Infectious Diseases. Nice, France, 2006.
Guirgis, Bassem S. S., Claudia Sa e Cunha, Ines Gomes, Miguel Cavadas, Isabel Silva, Goncalo Doria, Gregory L. Blatch, Pedro V. Baptista, Eulalia Pereira, Hassan M. E. Azzazy, Maria M. Mota, Miguel Prudencio, and Ricardo Franco. "Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection." Analytical and Bioanalytical Chemistry 402 (2012): 1019-1027. Abstract

n/a

Vinhas, Raquel, Milton Cordeiro, Fábio Carlos, Soraia Mendo, Alexandra Fernandes, Sara Figueiredo, and Pedro Baptista. "Gold nanoparticle-based theranostics: disease diagnostics and treatment using a single nanomaterial." Journal of Nanobiosensors in Disease Diagnosis (2015): 11-23. AbstractWebsite

Nanotheranostics takes advantage of nanotechnology-based systems in order to diagnose and treat a specific disease. This approach is particularly relevant for personalized medicine, allowing the detection of a disease at an early stage, to direct a suitable therapy toward the target tissue based on the molecular profile of the altered phenotype, subsequently facilitating disease monitoring and following treatment. A tailored strategy also enables to reduce the off-target effects associated with universal treatments and improve the safety profile of a given treatment. The unique optical properties of gold nanoparticles, their ease of surface modification, and high surface-to-volume ratio have made them central players in this area. By combining imaging, targeting, and therapeutic agents in a single vehicle, these nanoconjugates are (ought to be) an important tool in the clinics. In this review, the multifunctionality of gold nanoparticles as theranostics agents will be highlighted, as well as the requirements before the translation of these nanoplatforms into routine clinical practice.

Child, Hannah Winifred, Yulan Hernandez, João Conde, Margaret Mullin, Pedro V. Baptista, Jesus Maria de la Fuente, and Catherine C. Berry. "Gold nanoparticle-siRNA mediated oncogene knockdown at RNA and protein level, with associated gene effects." NANOMEDICINE 10 (2015): 2513-2525. AbstractWebsite

Aims: RNAi is a powerful tool for gene silencing that can be used to reduce undesirable overexpression of oncogenes as a novel form of cancer treatment. However, when using RNAi as a therapeutic tool there is potential for associated gene effects. This study aimed to utilize gold nanoparticles to deliver siRNA into HeLa cells. Results: Knockdown of the c-myc oncogene by RNAi, at the RNA, protein and cell proliferation level was achieved, while also identifying associated gene responses. Discussion: The gold nanoparticles used in this study present an excellent delivery platform for siRNA, but do note associated gene changes. Conclusion: The study highlights the need to more widely assess the cell physiological response to RNAi treatment, rather than focus on the immediate RNA levels.

Vinhas, Raquel, Alexandra Fernandes, and Pedro V. Baptista. "Gold Nanoparticles for BCR-ABL1 Gene Silencing: Improving Tyrosine Kinase Inhibitor Efficacy in Chronic Myeloid Leukemia." Molecular Therapy Nucleic Acids 7 (2017): 408-416. AbstractWebsite

Introduction of tyrosine kinase inhibitors for chronic myeloid leukemia treatment is associated with a 63% probability of maintaining a complete cytogenetic response, meaning that over 30% patients require an alternative methodology to overcome resistance, tolerance, or side effects. Considering the potential of nanotechnology in cancer treatment and the benefits of a combined therapy with imatinib, a nanoconjugate was designed to achieve BCR-ABL1 gene silencing. Gold nanoparticles were functionalized with a single-stranded DNA oligonucleotide that selectively targets the e14a2 BCR-ABL1 transcript expressed by K562 cells. This gold (Au)-nanoconjugate showed great efficacy in gene silencing that induced a significant increase in cell death. Variation of BCL-2 and BAX protein expression, an increase of caspase-3 activity, and apoptotic bodies in cells treated with the nanoconjugate demonstrate its aptitude for inducing apoptosis on K562 BCR-ABL1-expressing cells. Moreover, the combination of the silencing Au-nanoconjugate with imatinib prompted a decrease of imatinib IC50. This Au-nanoconjugate was also capable of inducing the loss of viability of imatinib-resistant K562 cells. This strategy shows that combination of Au-nanoconjugate and imatinib make K562 cells more vulnerable to chemotherapy and that the Au-nanoconjugate alone may overcome imatinib-resistance mechanisms, thus providing an effective treatment for chronic myeloid leukemia patients who exhibit drug tolerance.