Publications in the Year: 2014

Book Chapter

Silva, J, Fernandes {AR}, Baptista {PV}.  2014.  Application of Nanotechnology in Drug Delivery, jul. Application of Nanotechnology in Drug Delivery. (Sezer, {Ali Demir}, Ed.).: InTech Abstract
n/a

Journal Article

Cabral, {RM }, Baptista P.  2014.  Anti-cancer precision theranostics: a focus on multifunctional gold nanoparticles, nov. Expert Review Of Molecular Diagnostics. 14:1041–1052., Number 8: Expert Reviews Abstract

Gold nanoparticles have been appointed as cutting-edge platforms for combined diagnostic and therapeutic approaches due to their exquisite physicochemical and optical properties. In particular, their potential benefits in cancer settings are enormous, as they can serve as targeted vehicles for controlled drug release, photothermal therapy and gene therapy, as well as contrast imaging agents to allow for real-time monitoring of both disease and therapeutic progression. These theranostic platforms represent powerful image-guided therapeutics, tailored to maximize individual patient benefit and with the ability to significantly minimize toxic side effects. Here the authors review some of the recent advances on the development of gold nanoparticle conjugates for combined diagnostics and therapy, while reflecting on the obstacles toward translational research.

Roma-Rodrigues, C, de Fernandes {MANCR}, Baptista P.  2014.  Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells. BioMed Research International. : Hindawi Abstract

Cancer development is amultistep process in which exosomes play important roles. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. The major role of exosomes seems to be the transport of bioactive molecules between cells. Depending on the cell of origin, exosomes are implicated in the regulation of several cellular events, with phenotypic consequences in recipient cells. Cancer derived exosomes (CCEs) are important players in the formation of the tumour microenvironment by (i) enabling the escape of tumour cells to immunological system and help initiating the inflammatory response; (ii) acting in the differentiation of fibroblasts and mesenchymal cells into myofibroblasts; (iii) triggering the angiogenic process; and (iv) enhancing the metastatic evolution of the tumour by promoting epithelial to mesenchymal transformation of tumour cells and by preparing the tumour niche in the new anatomical location. Since the finding that exosomes content resembles that of the cell of origin, they may be regarded as suitable biomarkers for cancer diagnosis, allowing for diagnosis and prognosis via a minimal invasive procedure. Exosome involvement in cancer may open new avenues regarding therapeutics, such as vectors for targeted drug delivery.

Veigas, B, Branquinho R, {Vaz Pinto} J, Wojcik {PJ}, de Martins {RFP}, Fortunato {EMC}, Baptista {PMRV}.  2014.  Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification, feb. Biosensors & Bioelectronics. 52:50–55.: Elsevier Abstract

Field-effect-based devices are becoming a basic structural element in a new generation of microbiosensors. Reliable molecular characterization of DNA and/or RNA is of paramount importance for disease diagnostics and to follow up alterations in gene expression profiles. The use of such devices for point-of-need diagnostics has been hindered by the need of standard or real-time PCR amplification procedures. The present work focuses on the development of a tantalum pentoxide (Ta2O5) based sensor for the real-time label free detection of DNA amplification via loop mediated isothermal amplification (LAMP) allowing for quantitative analysis of the cMYC proto-oncogene. The strategy based on the field effect sensor was tested within a range of 1 x 10(8)-10(11) copies of target DNA, and a linear relationship between the log copy number of the initial template DNA and threshold time was observed allowing for a semi-quantitative analysis of DNA template. The concept offers many of the advantages of isothermal quantitative real-time DNA amplification in a label free approach and may pave the way to point-of-care quantitative molecular analysis focused on ease of use and low cost.

Reimão-Pinto, {MM }, Cordeiro A, Almeida C, Pinheiro {AV }, Moro A, Lima {JC }, Baptista P.  2014.  Dual-color control of nucleotide polymerization sensed by a fluorescence actuator. Photochemical & Photobiological Sciences. 13:751–756., Number 5: Springer Abstract

Spatial and temporal control of molecular mechanisms can be achieved using photolabile bonds that connect biomolecules to protective caging groups, which can be cleaved upon irradiation of a specific wavelength, releasing the biomolecule ready-to-use. Here we apply and improve a previously reported strategy to tightly control in vitro transcription reactions. The strategy involves two caging molecules that block both ATP and GTP nucleotides. Additionally, we designed a molecular beacon complementary to the synthesized mRNA to infer its presence through a light signal. Upon release of both nucleotides through a specific monochromatic light (390 and 325 nm) we attain a light signal indicative of a successful in vitro transcription reaction. Similarly, in the absence of irradiation, no intense fluorescence signal was obtained. We believe this strategy could further be applied to DNA synthesis or the development of logic gates.

Conde, J, Larguinho M, Cordeiro A, Raposo {LR }, Costa {PM }, Santos S, Diniz {MS }, Fernandes {AR}, Baptista {PV}.  2014.  Gold-nanobeacons for gene therapy: Evaluation of genotoxicity, cell toxicity and proteome profiling analysis, aug. Nanotoxicology. 8:521–532., Number 5: Informa Healthcare Abstract

Antisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3′-Cy3 and 5′-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2- Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.

Quaresma, P, Osório I, c}alo Dória G{\c, Carvalho {PA }, Pereira A, Langer J, Araújo {JP}, Pastoriza-Santos I, Liz-Marzán {LM }, Franco R, Baptista P, Pereira E.  2014.  Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection. RSC Advances. 4:3659–3667., Number 8: RSC - Royal Society of Chemistry Abstract

A novel synthetic methodology for star shaped gold-coated magnetic nanoparticles is reported. The coating is performed in two steps: formation of gold nuclei at the surface of magnetite nanoparticles followed by growth of the gold nuclei into a complete star shaped shell. The star-shaped gold-coated magnetic nanoparticles thus obtained preserve the magnetic properties of the precursor magnetite nanoparticles, e. g. they can be easily separated with a magnet. In addition, the gold coating provides interesting optical properties while simultaneously allowing for biofunctionalization that may be advantageous for biological applications, such as (bio)detection via surface-enhanced Raman spectroscopy (SERS). As a proof-of-concept, a capping agent terminated with a nickel(II)-nitrilotriacetate group showing high affinity for histidine was used to modify the surface of the nanoparticles. The resulting star-shaped nanoparticles were used to selectively capture histidine-tagged maltose-binding protein from a crude cell extract. Finally, the performance of star shaped gold-coated magnetic nanoparticles as SERS platforms was demonstrated through the detection of Raman active dye (Astra Blue).

Costa, {MN}, Veigas B, Jacob {JM }, Santos {DS }, Gomes J, Baptista {PV}, Martins R, Inácio J, Fortunato E.  2014.  A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: Lab-on-paper, mar. Nanotechnology. 25, Number 9: IOP Publishing Abstract

There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our results towards the development of paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. Focusing on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, we present three main and distinct colorimetric approaches: (i) enzymatic reactions (glucose detection); (ii) immunoassays (antibodies anti-Leishmania detection); (iii) nucleic acid sequence identification (Mycobacterium tuberculosis complex detection). Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The colouration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a 3D sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the coloured products usually occurs. The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibres. The detection of Mycobacterium tuberculosis nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The obtained results with the above-mentioned proof-of-concept sensors are thus promising towards the future development of simple and cost-effective paper-based diagnostic devices.

Carlos, {FF}, Flores O, Doria G, Baptista P.  2014.  Characterization of genomic single nucleotide polymorphism via colorimetric detection using a single gold nanoprobe, nov. Analytical Biochemistry. 465:1–5.: ACADEMIC PRESS INC ELSEVIER SCIENCE Abstract

Identification of specific nucleic acid sequences mediated by gold nanoparticles derivatized thiol-modified oligonucleotides (Au-nanoprobes) has been proven to be a useful tool in molecular diagnostics. Here, we demonstrate that, on optimization, detection may be simplified via the use of a single Au-nanoprobe to detect a single nucleotide polymorphism (SNP) in homo- or heterozygote condition. We validated this non-cross-linking approach through the analysis of 20 clinical samples using a single specific Au-nanoprobe for an SNP in the FTO (fat mass and obesity-associated) gene against direct DNA sequencing. Sensitivity, specificity, and limit of detection CLOD) were determined, and statistical differences were calculated by one-way analysis of variance (ANOVA) and a post hoc Tukey's test to ascertain whether there were any differences between Au-nanoprobe genotyped groups. For the first time, we show that the use of a single Au-nanoprobe can detect SNP for each genetic status (wild type, heterozygous, or mutant) with high degrees of sensitivity (87.50%) and specificity (91.67%). (c) 2014 Elsevier Inc. All rights reserved.

Bao, C, Conde J, Polo E, {del Pino} P, Moros M, Baptista P, Grazu V, Cui D, {de la Fuente} {JM }.  2014.  A promising road with challenges: where are gold nanoparticles in translational research? Nanomedicine. 9:2353–2370., Number 15: Future Medicine Ltd. Abstract

Nanoenabled technology holds great potential for health issues and biological research. Among the numerous inorganic nanoparticles that are available today, gold nanoparticles are fully developed as therapeutic and diagnostic agents both in vitro and in vivo due to their physicochemical properties. Owing to this, substantial work has been conducted in terms of developing biosensors for noninvasive and targeted tumor diagnosis and treatment. Some studies have even expanded into clinical trials. This article focuses on the fundamentals and synthesis of gold nanoparticles, as well as the latest, most promising applications in cancer research, such as molecular diagnostics, immunosensors, surface-enhanced Raman spectroscopy and bioimaging. Challenges to their further translational development are also discussed.

Veigas, B, Fernandes {AR}, Baptista {PV}.  2014.  AuNPs for identification of molecular signatures of resistance., aug. Frontiers in Microbiology. : Frontiers Research Foundation Abstract
n/a
Conde, J, Dias {JT }, Grazu V, Moros M, Baptista P, {de la Fuente} {JM }.  2014.  Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine. Frontiers in Chemistry. 2: Frontiers Media Abstract

In the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.

Pedrosa, P, Veigas B, Machado D, Couto I, Viveiros M, Baptista {PV}.  2014.  Gold nanoprobes for multi loci assessment of multi-drug resistant tuberculosis, may. Tuberculosis. 94:332–337., Number 3: Churchill Livingstone Abstract

Tuberculosis, still one of the leading human infectious diseases, reported 8.7 million new cases in 2011 alone. Also, the increasing rate of multidrug-resistant tuberculosis (MDRTB) and its treatment difficulties pose a serious public health threat especially in developing countries. Resistance to isoniazid and rifampicin, first line antibiotics, is commonly associated with point mutations in katG, inhA and rpoB genes of Mycobacterium tuberculosis complex (MTBC). Therefore, the development of cheap, fast and simple molecular methods to assess susceptibility profiles would have a huge impact in the capacity of early diagnosis and treatment of MDRTB. Gold nanoparticles functionalized with thiol-modified oligonucleotides (Au-nanoprobes) have shown the potential to provide a rapid and sensitive detection method for MTBC and single base mutations associated with antibiotic resistance, namely the characterization of the three most relevant codons in rpoB gene associated to rifampicin resistance. Here we extend the Au-nanoprobe approach towards discriminating specific mutations within inhA and rpoB genes in PCR amplified DNA from isolates. Using a multiplex PCR reaction for these two genes, it is possible to assess both loci in parallel, and extend the potential of the Au-nanoprobe method to MDRTB molecular characterization with special application in the most frequent Portuguese genotypes. (C) 2014 Elsevier Ltd. All rights reserved.

Baptista, {PV}.  2014.  Nanodiagnostics: Leaving the research lab to enter the clinics?, dec Diagnosis. 1:305–309., Number 4: Walter De Gruyter Abstract

Nanotechnology has provided a plethora of valuable tools that can be applied for the detection of biomolecules and analytes relevant for diagnosis purposes - nanodiagnostics. This surging new field of molecular diagnostics has been revolutionizing laboratory procedures and providing new ways to assess disease biomarkers with increased sensitivity. While most of the reported nanodiagnostics systems are proof-of-concepts that demonstrate their efficacy in the lab, several nanodiagnostics platforms have already matured to a level that open the way for effective translation to the clinics. Nanodiagnostics platforms (e.g., gold nanoparticles containing systems) have been remarkably useful for the development of molecular diagnosis strategies for DNA/RNA detection and characterization, including systems suitable for point-of-care. How near are nanodiagnostics to go from the bench to the bedside?

Baptista, {PMRV}.  2014.  3h Gold nanobeacons: a potential nanotheranostics platform. Nanomedicine. 9:2247–2250., Number 15: Future Medicine Ltd. Abstract
n/a
Veigas, B, Fernandes {AR}, Baptista P.  2014.  AuNPs for identification of molecular signatures of resistance, aug. Frontiers in Microbiology. 5: Frontiers Research Foundation Abstract

The increasing levels of drug resistance are one of biggest threats to overcome microbial infection. The ability to rapidly and accurately detect a given pathogen and its drug resistance profile is essential for the appropriate treatment of patients and for preventing further spread of drug-resistant strains. The predictive and informative value of these molecular markers needs to be translated into robust surveillance tools that correlate to the target and extent of resistance, monitor multiresistance and provide real time assessment at point-of-need. Rapid molecular assays for the detection of drug-resistance signatures in clinical specimens are based on the detection of specific nucleotide sequences and/or mutations within pre-selected biomarkers in the genome, indicative of the presence of the pathogen and/or associated with drug resistance. DNA and/or RNA based assays offer advantages over phenotypic assays, such as specificity and time from collection to result. Nanotechnology has provided new and robust tools for the detection of pathogens and more crucially to the fast and sensitive characterisation of molecular signatures of drug resistance. Amongst the plethora of nanotechnology based approaches, gold nanoparticles have prompt for the development of new strategies and platforms capable to provide valuable data at point-of-need with increased versatility but reduced costs. Gold nanoparticles, due to their unique spectral, optical and electrochemical properties, are one of the most widely used nanotechnology systems for molecular diagnostics. This review will focus on the use of gold nanoparticles for screening molecular signatures of drug resistance that have been reported thus far, and provide a critical evaluation of current and future developments of these technologies assisting pathogen identification and characterisation.

Restani, {RB }, Conde J, Baptista {PV}, Cidade {MT}, Bragan{\c c}a {AM }, Morgado J, Correia {IJ }, Aguiar-Ricardo A, Bonifácio {VDB }.  2014.  Polyurea dendrimer for efficient cytosolic siRNA delivery. RSC Advances. 4:54872–54878., Number 97: RSC - Royal Society of Chemistry Abstract

The design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are 'smart' biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, they are able to automatically and reversibly transform their conformation in response to pH stimulus. Here, we show that PURE-G4 is a useful gene silencing platform showing no cellular toxicity. As a proof of concept we investigated the PURE-G4-siRNA dendriplex, which was shown to be an attractive platform with high transfection efficacy. The simplicity associated with the complexation of siRNA with polyurea dendrimers makes them a powerful tool for efficient cytosolic siRNA delivery.

Conde, J, Bao C, Cui D, Baptista {PV}, Tian F.  2014.  Antibody-drug gold nanoantennas with Raman spectroscopic fingerprints for in vivo tumour theranostics, jun. Journal of Controlled Release. 183:87–93., Number 1: Elsevier Abstract

Inspired by the ability of SERS nanoantennas to provide an integrated platform to enhance disease targeting in vivo, we developed a highly sensitive probe for in vivo tumour recognition with the capacity to target specific cancer biomarkers such as epidermal growth factor receptors (EGFR) on human cancer cells and xenograft tumour models. Here, we used   90 nm gold nanoparticles capped by a Raman reporter, encapsulated and entrapped by larger polymers and a FDA antibody-drug conjugate - Cetuximab (Erbitux®) - that specifically targets EGFR and turns off a main signalling cascade for cancer cells to proliferate and survive. These drug/SERS gold nanoantennas present a high Raman signal both in cancer cells and in mice bearing xenograft tumours. Moreover, the Raman detection signal is accomplished simultaneously by extensive tumour growth inhibition in mice, making these gold nanoantennas ideal for cancer nanotheranostics, i.e. tumour detection and tumour cell inhibition at the same time.

Larguinho, M, Costa PM, c}alo Sousa G{\c, Diniz {MS }, Costa {MH}, Baptista P.  2014.  Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: Correlation with genotoxicity and metabolic alterations, dec. Journal of Applied Toxicology. 34:1293–1302., Number 12: John Wiley & Sons, Ltd. Abstract

Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.

de Fernandes, {MANCR}, Baptista {PMRV}.  2014.  Organometallic Compounds in Cancer Therapy: Past Lessons and Future Directions., jan. Anti-Cancer Agents In Medicinal Chemistry. 14:1199–1212., Number 9: Bentham Science Publishers Abstract
n/a
Larguinho, M, Cordeiro A, Diniz M, Costa {PM }, Baptista P.  2014.  Metabolic and histopathological alterations in the marine bivalve Mytilus galloprovincialis induced by chronic exposure to acrylamide, nov. Environmental Research. 135:55–62.: Academic Press | Elsevier Abstract

Although the neurotoxic and genotoxic potential of acrylamide has been established in freshwater fish, the full breadth of the toxicological consequences induced by this xenobiotic has not yet been disclosed, particularly in aquatic invertebrates. To assess the effects of acrylamide on a bivalve model, the Mediterranean mussel (Mytilus galloprovincialis), two different setups were accomplished: 1) acute exposure to several concentrations of waterborne acrylamide to determine lethality thresholds of the substance and 2) chronic exposure to more reduced acrylamide concentrations to survey phases I and II metabolic endpoints and to perform a whole-body screening for histopathological alterations. Acute toxicity was low (LC50 approximate to 400 mg/L). However, mussels were responsive to prolonged exposure to chronic concentrations of waterborne acrylamide (1-10 mg/L), yielding a significant increase in lipid peroxidation plus EROD and GST activities. Still, total anti-oxidant capacity was not exceeded. In addition, no neurotoxic effects could be determined through acetylcholine esterase (AChE) activity. The findings suggest aryl-hydrocarbon receptor (Ahr)-dependent responses in mussels exposed to acrylamide, although reduced comparatively to vertebrates. No significant histological damage was found in digestive gland or gills but female gonads endured severe necrosis and oocyte atresia. Altogether, the results indicate that acrylamide may induce gonadotoxicity in mussels, although the subject should benefit from further research. Altogether, the findings suggest that the risk of acrylamide to aquatic animals, especially molluscs, may be underestimated. (C) 2014 Elsevier Inc. All rights reserved.

{Peixoto de Almeida}, M, Pereira E, Baptista P, Gomes I, Figueiredo S, Soares L, Franco R.  2014.  Gold Nanoparticles as (Bio)Chemical Sensors. Comprehensive Analytical Chemistry. 66:529–567.: Elsevier Abstract

This chapter focuses on several sensing strategies and major recent advances in the use of gold nanoparticles in (bio)sensing of chemical and biological analytes. A brief introduction is presented on relevant properties of gold nanoparticles for sensing, the main types of (bio)chemical sensors, and the main detection techniques, followed by subsections according to sensing methodologies. These include colorimetric sensing and the biobarcode assay, fluorometric-based methods, electric and electrochemical sensing, and, last, more recent and advanced methodologies such as surface plasmon resonance and Raman-based sensors. In closing, relevance is given to advanced methods, featuring extremely high sensitivity and selectivity, down to single-molecule detection. Anisotropic gold nanoparticles have a special role in future developments.

Larguinho, M, Correia D, Diniz M, Baptista P.  2014.  Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels, jul. Journal Of Nanoparticle Research. 16, Number 8: Kluwer Academic Publishers Abstract

This work reports a one-way flow bioaccumulation of gold nanoparticles (AuNPs) in aquatic organisms between two trophic levels. First, Dunaliella salina cells were exposed to citrate-capped AuNPs at different concentrations and during distinct exposure periods to assess internalization and behavior. Afterward, D. salina was incubated with both citrate-capped and functionalized (PEGylated) AuNPs for 24 h and later fed to Mytilus galloprovincialis. Analysis was carried out to assess Au content, histological differences and oxidative stress. These algae were fed to the model organism M. galloprovincialis (Mediterranean mussel) as it is considered of major importance for assessing toxic effects and bioaccumulation of different pollutants in aquatic environments. Elemental Au analysis revealed an uptake of about 76 % of the initial amount of AuNPs (and 36 % for PEGylated AuNPs) in microalgae. Mussel gills and digestive gland showed variable Au content in individuals fed with D. salina previously exposed to AuNPs. No significant morphological alterations were observed in D. salina or mussel digestive glands. Glutathione-s-transferase activity and total antioxidant capacity were assessed as oxidative stress biomarkers showing that AuNPs are not prone to trigger the induction of defenses against oxidative stress.

Fortunato, {EMC}, Águas {HMB}, Busani {TL}, de Martins {RFP}, Baptista {PMRV}.  2014.  Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length, jan. RSC Advances. 4:56013–56025., Number 99: RSC - Royal Society of Chemistry Abstract

This paper presents the performance of a passive planar rhombic micromixer with diamond-shaped obstacles and a rectangular contraction between the rhombi. The device was experimentally optimized using water for high mixing efficiency and a low pressure drop over a wide range of Reynolds numbers (Re = 0.1-117.6) by varying geometrical parameters such as the number of rhombi, the distance between obstacles and the contraction width. Due to the large amount of data generated, statistical methods were used to facilitate and improve the results of the analysis. The results revealed a rank of factors influencing mixing efficiency: Reynolds number > number of rhombi > contraction width > interobstacles distance. The pressure drop measured after three rhombi depends mainly on Re and interobstacle distance. The resulting optimum geometry for the low Re regime has a contraction width of 101 mu m and inter-obstacles distance of 93 mu m, while for the high Re regime a contraction width of 400 v and inter-obstacle distance of 121 mu m are more appropriate. These mixers enabled 80% mixing efficiency creating a pressure drop of 6.0 Pa at Re = 0.1 and 5.1 x 10(4) Pa at Re = 117.6, with a mixer length of 2.5 mu m. To the authors' knowledge, the developed mixer is one of the shortest planar passive micromixers reported to date.

Miscellaneous

loading