Publications

Sort by: Type [ Year  (Desc)]
2011
Nanoparticles in molecular diagnostics, Baptista, {Pedro V. }, c}alo Dória Gon{\c, Quaresma Pedro, Cavadas Miguel, Neves {Cristina S. }, Gomes Inês, Eaton Peter, Pereira Eulália, and Franco Ricardo , Nanoparticles in Translational Science and Medicine, Netherlands, p.427–488, (2011) Abstract

The aim of this chapter is to provide an overview of the available and emerging molecular diagnostic methods that take advantage of the unique nanoscale properties of nanoparticles (NPs) to increase the sensitivity, detection capabilities, ease of operation, and portability of the biodetection assemblies. The focus will be on noble metal NPs, especially gold NPs, fluorescent NPs, especially quantum dots, and magnetic NPs, the three main players in the development of probes for biological sensing. The chapter is divided into four sections: a first section covering the unique physicochemical properties of NPs of relevance for their utilization in molecular diagnostics; the second section dedicated to applications of NPs in molecular diagnostics by nucleic acid detection; and the third section with major applications of NPs in the area of immunoassays. Finally, a concluding section highlights the most promising advances in the area and presents future perspectives.

2010
Development of a fast and efficient ultrasonic-based strategy for DNA fragmentation, Larguinho, Miguel, Santos {Hugo M. }, c}alo Doria Gon{\c, Scholz H., Baptista {Pedro V. }, and Capelo {José L. } , Talanta, may, Volume 81, Number 3, p.881–886, (2010) Abstract

Several ultrasound-based platforms for DNA sample preparation were evaluated in terms of effective fragmentation of DNA (plasmid and genomic DNA)-ultrasonic probe, sonoreactor, ultrasonic bath and the newest Vialtweeter device. The sonoreactor showed the best efficiency of DNA fragmentation while simultaneously assuring no cross-contamination of samples, and was considered the best ultrasonic tool to achieve effective fragmentation of DNA at high-throughput and avoid sample overheating. Several operation variables were studied-ultrasonication time and amplitude, DNA concentration, sample volume and sample pre-treatment-that allowed optimisation of a sonoreactor-based strategy for effective DNA fragmentation. Optimal operating conditions to achieve DNA fragmentation were set to 100% ultrasonic amplitude, 100 μL sample volume, 8 min ultrasonic treatment (2 min/sample) for a DNA concentration of 100 μg mL-1. The proposed ultrasonication strategy can be easily implemented in any laboratory setup, providing fast, simple and reliable means for effective DNA sample preparation when fragmentation is critical for downstream molecular detection and diagnostics protocols.

Colorimetric method and kit for the detection of specific nucleic acid sequences using metal nanoparticles functionalized with modified oligonucleotides, Tavares, {Jose Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Doria {Goncalo Maria Reimão Pinto De Franca}, and de Flores {Alcino Orfeu Leão} , mar, (2010) Abstract

The present invention relates to a colorimetric method for the detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences, through the aggregation of nanoparticles functionalized with modified oligonucleotides, induced by an increase of the medium's ionic strength. Another aspect of the present invention relates with the development of a kit based on the method of the present invention, allowing for a quick and easy detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences.

AuAg-alloy-nanoprobes for specific nucleic acid detection, Doria, G., Dias {J. T. }, Larguinho M., Pereira E., Franco R., and Baptista P. , Nanotechnology 2010: Bio Sensors, Instruments, Medical, Environment and Energy - Technical Proceedings of the 2010 NSTI Nanotechnology Conference and Expo, NSTI-Nanotech 2010, jan, Volume 3, p.62–65, (2010) Abstract

The derivatization of gold-silver alloy nanoparticles with thiol-ssDNA oligonucleotides (AuAg-alloy-nanoprobes) and their use in nucleic acid detection is presented. A non-cross-linking method has been previously developed by our group using gold nanoparticles, which is based on the colorimetric comparison of solutions before and after salt-induced nanoprobe aggregation. Only the presence of a complementary target stabilizes the nanoprobe, preventing aggregation and colorimetric change after salt addition. Through this approach, the AuAg-alloy-nanoprobes allowed to specifically detect a sequence derived from the RNA polymerase β-subunit gene of Mycobacterium tuberculosis, the etiologic agent of human tuberculosis, with a 2.5-fold enhanced sensitivity (0.3 μg of total DNA) when compared to their gold counterparts.

Colorimetric method and kit for the detection of specific nucleic acid sequences using metal nanoparticles functionalized with modified oligonucleotides, Tavares, {Jose Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Doria {Goncalo Maria Reimao Pinto De Franca}, and Flores {Alcino Orfeu De Leao} , jan, (2010) Abstract

The present invention relates to a colorimetric method for the detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences, through the aggregation of nanoparticles functionalized with modified oligonucleotides, induced by an increase of the medium's ionic strength. Another aspect of the present invention relates with the development of a kit based on the method of the present invention, allowing for a quick and easy detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences.

Optimizing Au-nanoprobes for specific sequence discrimination, DQ Group Author, Baptista {Pedro Miguel Ribeiro Viana}, and Franco Ricardo , Colloids And Surfaces B-Biointerfaces, jan, Volume 77, Number 1, p.122–124, (2010) Abstract

Gold nanoparticles functionalized with thiol-oligonucleotides are ideal platforms for detection of specific DNA sequences. Here we evaluate the effect of single base mismatches in hybridization efficiency according to the position of the mismatch, base pairing combination and thiol-oligonucleotide density in terms of specificity and efficiency of target recognition. Hybridization efficiency and single-nucleotide polymorphism discrimination at room temperature is maximized at a density of 83 +/- 4 thiol-oligonucleotides per 13.5 nm gold nanoparticle (24 pmol/cm(2)), and when the mismatch is localized at the 3'-end of the Au-nanoprobe, i.e. away from the gold nanoparticle surface. (C) 2010 Elsevier B.V. All rights reserved.

2008
Colorimetric method and kit for the detection of specific nucleic acid sequences using metal nanoparticles functionalized with modified oligonucleotides, Tavares, {Jose Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Doria {Goncalo Maria Reimao Pinto De Franca}, and Flores {Alcino Orfeu De Leao} , nov, (2008) Abstract

The present invention relates to a colorimetric method for the detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences, through the aggregation of nanoparticles functionalized with modified oligonucleotides, induced by an increase of the medium's ionic strength. Another aspect of the present invention relates with the development of a kit based on the method of the present invention, allowing for a quick and easy detection of specific nucleic acids sequences, including mutations or single nucleotide polymorphisms within nucleic acid sequences.

Método colorimétrico e estojo de detec{\c c}ão de sequências específicas de ácidos nucleicos através de nanopartículas metálicas funcionalizadas com oligonucleótidos modificados, Tavares, {José Ricardo Ramos Franco}, Baptista {Pedro Miguel Ribeiro Viana}, Dória {Goncalo Maria Reimao Pinto De Franca}, and de Flores {Alcino Orfeu Leão} , nov, (2008) Abstract

O presente invento relaciona-se com um método colorimétrico de detec{\c c}ão de sequências específicas de ácidos nucleicos, incluindo muta{\c c}ões ou polimorfismos de nucleótido único em sequências de ácidos nucleicos, através da agrega{\c c}ão de nanopartículas funcionalizadas com oligonucleótidos modificados induzida por um aumento da for{\c c}a iónica do meio. Outro aspecto do presente invento relaciona-se com o desenvolvimento de um estojo que ao aplicar a metodologia objecto da presente inven{\c c}ão, permite a rápida e fácil detec{\c c}ão de sequências específicas de ácidos nucleicos, incluindo muta{\c c}ões ou polimorfismos de nucleótido único em sequências de ácidos nucleicos.

Identification of unamplified genomic DNA sequences using gold nanoparticle probes and a novel thin film photodetector, de Martins, {Rodrigo Ferrão Paiva}, Baptista Pedro, Silva {Leonardo Bione}, Raniero Leandro, c}alo Dória Gon{\c, Franco Ricardo, and Fortunato E. , Journal of Non-Crystalline Solids, may, Volume 354, Number 19-25, p.2580–2584, (2008) Abstract

This paper describes a novel colorimetric method for detection of nucleic acid targets in a homogeneous format with improved sensitivity by means of a system based on the combination of a tunable monochromatic light source and an amorphous/nanocrystalline silicon photodetector that detects color and light intensity changes undergone by samples/assays containing tailored gold nanoparticles probes. This new low cost, portable, fast and simple optoelectronic platform, with the possibility to be re-used, permits detection of at least 400 fentomole of specific DNA sequences without target or signal amplification and was applied to the rapid detection of human pathogens in large variety of clinical samples such as Mycobacterium tuberculosis.

Characterization of optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of nucleic acid sequences based on gold nanoparticle probes, Silva, {L. B. }, Baptista Pedro, Raniero Leandro, c}alo Doria Gon{\c, de Martins {Rodrigo Ferrão Paiva}, and Fortunato {Elvira Maria Correia} , Sensors and Actuators B: Chemical, jun, Volume 132, Number 2, p.508–511, (2008) Abstract
n/a
Gold nanoparticles for the development of clinical diagnosis methods, Baptista, Pedro, Pereira Eulália, Eaton Peter, c}alo Doria Gon{\c, Miranda Adelaide, Gomes Inês, Quaresma Pedro, and Franco Ricardo , Analytical and Bioanalytical Chemistry, jun, Volume 391, Number 3, p.943–950, (2008) Abstract

The impact of advances in nanotechnology is particularly relevant in biodiagnostics, where nanoparticle-based assays have been developed for specific detection of bioanalytes of clinical interest. Gold nanoparticles show easily tuned physical properties, including unique optical properties, robustness, and high surface areas, making them ideal candidates for developing biomarker platforms. Modulation of these physicochemical properties can be easily achieved by adequate synthetic strategies and give gold nanoparticles advantages over conventional detection methods currently used in clinical diagnostics. The surface of gold nanoparticles can be tailored by ligand functionalization to selectively bind biomarkers. Thiol-linking of DNA and chemical functionalization of gold nanoparticles for specific protein/antibody binding are the most common approaches. Simple and inexpensive methods based on these bio-nanoprobes were initially applied for detection of specific DNA sequences and are presently being expanded to clinical diagnosis.

2007
Amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences using gold nanoparticle probes, de Martins, {Rodrigo Ferrão Paiva}, Baptista Pedro, Raniero Leandro, c}alo Doria Gon{\c, Silva {L. B. }, Franco Ricardo, and Fortunato {Elvira Maria Correia} , Applied Physics Letters, jan, Volume 90, Number 2, p.n/d, (2007) Abstract

Amorphous/nanocrystalline silicon pi'ii'n devices fabricated on micromachined glass substrates are integrated with oligonucleotide-derivatized gold nanoparticles for a colorimetric detection method. The method enables the specific detection and quantification of unamplified nucleic acid sequences (DNA and RNA) without the need to functionalize the glass surface, allowing for resolution of single nucleotide differences between DNA and RNA sequences-single nucleotide polymorphism and mutation detection. The detector's substrate is glass and the sample is directly applied on the back side of the biosensor, ensuring a direct optical coupling of the assays with a concomitant maximum photon capture and the possibility to reuse the sensor. (c) 2007 American Institute of Physics.

Novel optoelectronic platform using an amorphous/nanocrystalline silicon biosensor for the specific identification of unamplified nucleic acid sequences based on gold nanoparticle probes, Silva, {Leonardo Bione}, Baptista Pedro, Raniero Leandro, c}alo Dória Gon{\c, Franco Ricardo, de Martins {Rodrigo Ferrão Paiva}, and Fortunato {Elvira Maria Correia} , Solid-State Sensors, Actuators and Microsystems Conference, 2007, jan, p.935–938, (2007) Abstract
n/a
2006
Gold-nanoparticle-probe-based assay for rapid and direct detection of Mycobacterium tuberculosis DNA in clinical samples, DQ Group Author, Baptista {Pedro Miguel Ribeiro Viana}, and Franco Ricardo , Clinical Chemistry, jan, Volume 52, Number 7, p.1433–1434, (2006) Abstract
n/a
2005
Colorimetric detection of eukaryotic gene expression with DNA-derivatized gold nanoparticles, Baptista, {Pedro Miguel Ribeiro Viana}, c}alo Dória Gon{\c, Henriques David, Pereira Eulália, and Franco Ricardo , Journal of Biotechnology, jan, Volume 119, Number 2, p.111–7, (2005) Abstract

Thiol-linked DNA-gold nanoparticles were used in a novel colorimetric method to detect the presence of specific mRNA from a total RNA extract of yeast cells. The method allowed detection of expression of the FSY1 gene that encodes a specific fructose/H+ symporter in Saccharomyces bayanus PYCC 4565. FSY1 is strongly expressed when the yeast is grown in fructose as the sole carbon source, while cells cultivated in glucose as the sole carbon source repress gene expression. The presence of FSY1 mRNA is detected based on color change of a sample containing total RNA extracted from the organism and gold nanoparticles derivatized with a 15-mer of complementary single stranded DNA upon addition of NaCl. If FSY1 mRNA is present, the solution remains pink, changing to blue-purple in the absence of FSY1 mRNA. Direct detection of specific expression was possible from only 0.3 microg of unamplified total RNA without any further enhancement. This novel method is inexpensive, very easy to perform as no amplification or signal enhancement steps are necessary and takes less than 15 min to develop after total RNA extraction. No temperature control is necessary and color change can be easily detected visually.