Publications

Sort by: Type [ Year  (Desc)]
2021
Inflammatory Factors, Genetic Variants and Predisposition for Preterm Birth, Couceiro, Joana, Matos Irina, Mendes {José João}, Baptista {Pedro V. }, Fernandes {Alexandra R. }, and Quintas Alexandre , Clinical Genetics, oct, Volume 100, Number 4, p.357–367, (2021) Abstract

Preterm birth is a major clinical and public health challenge, with a prevalence of 11% worldwide. It is the leading cause of death in children younger than five years old and represents 70% of neonatal deaths and 75% of neonatal morbidity. Despite the clinical and public health significance, this condition's aetiology is still unclear, and most of the cases are spontaneous. There are several known preterm birth risk factors, including inflammatory diseases and the genetic background, although the underlying molecular mechanisms are far from understood. The present review highlights the research advances on the association between inflammatory-related genes and the increased risk for preterm delivery. The most associated genetic variants are the TNFα rs1800629, the IL1α rs17561, and the IL1RN rs2234663. Moreover, many of the genes discussed in this review are also implicated in pathologies involving inflammatory or autoimmune systems, such as periodontal disease, bowel inflammatory disease, and autoimmune rheumatic diseases. This review presents evidence suggesting a common genetic background to preterm birth, autoimmune and inflammatory diseases susceptibility. This article is protected by copyright. All rights reserved.

Vanadium(IV) complexes with methyl-substituted 8-hydroxyquinolines: Catalytic potential in the oxidation of hydrocarbons and alcohols with peroxides and biological activity, Palion-Gazda, Joanna, Luz André, Raposo {Luis R. }, Choroba Katarzyna, Nycz {Jacek E. }, Bieńko Alina, Lewińska Agnieszka, Erfurt Karol, Baptista {Pedro V. }, Machura Barbara, Fernandes {Alexandra R. }, Shul’pina {Lidia S. }, Ikonnikov {Nikolay S. }, and Shul’pin {Georgiy B. } , Molecules, oct, Volume 26, Number 21, (2021) Abstract

Methyl-substituted 8-hydroxyquinolines (Hquin) were successfully used to synthetize five-coordinated oxovanadium(IV) complexes: [VO(2,6-(Me)2-quin)2 ] (1), [VO(2,5-(Me)2-quin)2 ] (2) and [VO(2-Me-quin)2 ] (3). Complexes 1–3 demonstrated high catalytic activity in the oxidation of hydrocarbons with H2 O2 in acetonitrile at 50◦ C, in the presence of 2-pyrazinecarboxylic acid (PCA) as a cocatalyst. The maximum yield of cyclohexane oxidation products attained was 48%, which is high in the case of the oxidation of saturated hydrocarbons. The reaction leads to the formation of a mixture of cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone. When triphenylphosphine is added, cyclohexyl hydroperoxide is completely converted to cyclohexanol. Consideration of the regioand bond-selectivity in the oxidation of n-heptane and methylcyclohexane, respectively, indicates that the oxidation proceeds with the participation of free hydroxyl radicals. The complexes show moderate activity in the oxidation of alcohols. Complexes 1 and 2 reduce the viability of colorectal (HCT116) and ovarian (A2780) carcinoma cell lines and of normal dermal fibroblasts without showing a specific selectivity for cancer cell lines. Complex 3 on the other hand, shows a higher cytotoxicity in a colorectal carcinoma cell line (HCT116), a lower cytotoxicity towards normal dermal fibroblasts and no effect in an ovarian carcinoma cell line (order of magnitude HCT116 > fibroblasts > A2780).

Genetic biomarkers in chronic myeloid leukemia: What have we learned so far?, Abdulmawjood, Bilal, Costa Beatriz, Roma-Rodrigues Catarina, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, nov, Volume 22, Number 22, (2021) Abstract

Chronic Myeloid Leukemia (CML) is a rare malignant proliferative disease of the hematopoietic system, whose molecular hallmark is the Philadelphia chromosome (Ph). The Ph chromosome originates an aberrant fusion gene with abnormal kinase activity, leading to the buildup of reactive oxygen species and genetic instability of relevance in disease progression. Several genetic abnormalities have been correlated with CML in the blast phase, including chromosomal aberrations and common altered genes. Some of these genes are involved in the regulation of cell apoptosis and proliferation, such as the epidermal growth factor receptor (EGFR), tumor protein p53 (TP53), or Schmidt-Ruppin A-2 proto-oncogene (SRC); cell adhesion, e.g., catenin beta 1(CTNNB1); or genes associated to TGF-β, such as SKI like proto-oncogene (SKIL), transforming growth factor beta 1 (TGFB1) or transforming growth factor beta 2 (TGFB2); and TNF-α pathways, such as Tumor necrosis factor (TNFA) or Nuclear factor kappa B subunit 1 (NFKB1). The involvement of miRNAs in CML is also gaining momentum, where dysregulation of some critical miRNAs, such as miRNA-451 and miRNA-21, which have been associated to the molecular modulation of pathogenesis, progression of disease states, and response to therapeutics. In this review, the most relevant genomic alterations found in CML will be addressed.

Rosa x hybrida extracts with dual actions: Antiproliferative effects against tumour cells and inhibitor of Alzheimer disease, Rivas-García, Lorenzo, Quiles {José L. }, Roma-Rodrigues Catarina, Raposo {Luis R. }, Navarro-Hortal {María D. }, Romero-Márquez {Jose M. }, Esteban-Muñoz Adelaida, Varela-López Alfonso, García {Laura Carrera}, Cianciosi Danila, {Forbes Hernández} {Tamara Y. }, Battino Maurizio, Llopis Juan, Fernandes {Alexandra R. }, Baptista {Pedro V. }, and Sánchez-González Cristina , Food and Chemical Toxicology, mar, Volume 149, (2021) Abstract

Edible flowers are being used as a new ingredient in modern gastronomy. Recently, these products have also gained interest as an important source of phenolic compounds with potential for biomedical applications. The present work studied a methanolic extract of Rosa x hybrida in which 35 individual phenolic compounds were identified. The extract has been evaluated for its antiproliferative properties in ovarian carcinoma cells. Results showed that the antiproliferative effect was associated with the induction of autophagy and apoptosis with the concomitant ROS increase probably related to mitochondria dysfunction. These antiproliferative effects might be associated with some components of the extract such as quercetin. The extract did not induce damage in healthy cells and that it was able to improve the wound healing activity. The present study also evaluated the properties of the mentioned extract in vivo in C. elegans. Tests demonstrated a lack of toxicity in the worm model. Promising results have been obtained in transgenic strains of C. elegans that produce human beta amyloid peptide, suggesting the possible utility of the extract from the point of view of Alzheimer disease. Altogether, results suggest that Rosa x hybrida extracts could be a new tool for the development of functional foods.

Square planar Au(III), Pt(II) and Cu(II) complexes with quinoline-substituted 2,2′:6′,2″-terpyridine ligands: From in vitro to in vivo biological properties, Choroba, Katarzyna, Machura Barbara, Szlapa-Kula Agata, Malecki {Jan G. }, Raposo Luis, Roma-Rodrigues Catarina, Cordeiro Sandra, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , European Journal of Medicinal Chemistry, jun, Volume 218, (2021) Abstract

Cancer is the second leading cause of death worldwide. Cisplatin has challenged cancer treatment; however, resistance and side effects hamper its use. New agents displaying improved activity and more reduced side effects relative to cisplatin are needed. In this work we present the synthesis, characterization and biological activities of three complexes with quinoline-substituted 2,2′:6′,2″-terpyridine ligand: [Pt(4′-(2-quin)-terpy)Cl](SO3CF3) (1), [Au(4′-(2-quin)-terpy)Cl](PF6)2·CH3CN (2) and [Cu(4′-(2-quin)-terpy)Cl](PF6) (3). The three complexes displayed a high antiproliferative activity in ovarian carcinoma cell line (A2780) and even more noticeable in a colorectal carcinoma cell line (HCT116) following the order 3 > 2 > 1. The complexes IC50 are at least 20 × lower than the IC50 displayed by cisplatin (15.4 μM) in HCT116 cell line while displaying at the same time, much reduced cytotoxicity in a normal dermal fibroblast culture. These cytotoxic activities seem to be correlated with the inclination angles of 2-quin unit to the central pyridine. Interestingly, all complexes can interact with calf-thymus DNA (CT-DNA) in vitro via different mechanisms, although intercalation seems to be the preferred mechanism at least for 2 and 3 at higher concentrations of DNA. Moreover, circular dichroism (CD) data seems to indicate that complex 3, more planar, induces a high destabilization of the DNA double helix (shift from B-form to Z-form). Higher the deviation from planar, the lower the cytotoxicity displayed by the complexes. Cellular uptake may be also responsible for the different cytotoxicity exhibited by complexes with 3 > 2 >1. Complex 2 seems to enter cells more passively while complex 1 and 3 might enter cells via energy-dependent and -independent mechanisms. Complexes 1–3 were shown to induce ROS are associated with the increased apoptosis and autophagy. Moreover, all complexes dissipate the mitochondrial membrane potential leading to an increased BAX/BCL-2 ratio that triggered apoptosis. Complexes 2 and 3 were also shown to exhibit an anti-angiogenic effect by significantly reduce the number of newly formed blood vessel in a CAM model with no toxicity in this in vivo model. Our results seem to suggest that the increased cytotoxicity of complex 3 in HCT116 cells and its potential interest for further translation to pre-clinical mice xenografts might be associated with: 1) higher % of internalization of HCT116 cells via energy-dependent and -independent mechanisms; 2) ability to intercalate DNA and due to its planarity induced higher destabilization of DNA; 3) induce intracellular ROS that trigger apoptosis and autophagy; 4) low toxicity in an in vivo model of CAM; 5) potential anti-angiogenic effect.

Specific Antiproliferative Properties of Proteinaceous Toxin Secretions from the Marine Annelid Eulalia sp. onto Ovarian Cancer Cells, Rodrigo, {Ana P. }, Mendes {Vera M. }, Manadas Bruno, Grosso {Ana R. }, {Alves de Matos} {António P. }, Baptista {Pedro V. }, Costa {Pedro M. }, and Fernandes {Alexandra R. } , Marine Drugs, jan, Volume 19, Number 1, (2021) Abstract

As Yondelis joins the ranks of approved anti-cancer drugs, the benefit from exploring the oceans' biodiversity becomes clear. From marine toxins, relevant bioproducts can be obtained due to their potential to interfere with specific pathways. We explored the cytotoxicity of toxin-bearing secretions of the polychaete Eulalia onto a battery of normal and cancer human cell lines and discovered that the cocktail of proteins is more toxic towards an ovarian cancer cell line (A2780). The secretions' main proteins were identified by proteomics and transcriptomics: 14-3-3 protein, Hsp70, Rab3, Arylsulfatase B and serine protease, the latter two being known toxins. This mixture of toxins induces cell-cycle arrest at G2/M phase after 3h exposure in A2780 cells and extrinsic programmed cell death. These findings indicate that partial re-activation of the G2/M checkpoint, which is inactivated in many cancer cells, can be partly reversed by the toxic mixture. Protein-protein interaction networks partake in two cytotoxic effects: cell-cycle arrest with a link to RAB3C and RAF1; and lytic activity of arylsulfatases. The discovery of both mechanisms indicates that venomous mixtures may affect proliferating cells in a specific manner, highlighting the cocktails' potential in the fine-tuning of anti-cancer therapeutics targeting cell cycle and protein homeostasis.

A Transcriptomic Approach to the Recruitment of Venom Proteins in a Marine Annelid, Rodrigo, {Ana P. }, Grosso {Ana R. }, Baptista {Pedro V. }, Fernandes {Alexandra R. }, and Costa {Pedro M. } , Toxins, jan, Volume 13, Number 2, (2021) Abstract

The growing number of known venomous marine invertebrates indicates that chemical warfare plays an important role in adapting to diversified ecological niches, even though it remains unclear how toxins fit into the evolutionary history of these animals. Our case study, the Polychaeta Eulalia sp., is an intertidal predator that secretes toxins. Whole-transcriptome sequencing revealed proteinaceous toxins secreted by cells in the proboscis and delivered by mucus. Toxins and accompanying enzymes promote permeabilization, coagulation impairment and the blocking of the neuromuscular activity of prey upon which the worm feeds by sucking pieces of live flesh. The main neurotoxins ({"}phyllotoxins{"}) were found to be cysteine-rich proteins, a class of substances ubiquitous among venomous animals. Some toxins were phylogenetically related to Polychaeta, Mollusca or more ancient groups, such as Cnidaria. Some toxins may have evolved from non-toxin homologs that were recruited without the reduction in molecular mass and increased specificity of other invertebrate toxins. By analyzing the phylogeny of toxin mixtures, we show that Polychaeta is uniquely positioned in the evolution of animal venoms. Indeed, the phylogenetic models of mixed or individual toxins do not follow the expected eumetazoan tree-of-life and highlight that the recruitment of gene products for a role in venom systems is complex.

Drug delivery nanosystems targeted to hepatic ischemia and reperfusion injury, Ferreira-Silva, Margarida, Faria-Silva Catarina, Baptista {Pedro Viana}, Fernandes Eduarda, Fernandes {Alexandra Ramos}, and Corvo {Maria Luísa} , Drug delivery and translational research, apr, Volume 11, Number 2, p.397–410, (2021) Abstract

Abstract: Hepatic ischemia and reperfusion injury (IRI) is an acute inflammatory process that results from surgical interventions, such as liver resection surgery or transplantation, or hemorrhagic shock. This pathology has become a severe clinical issue, due to the increasing incidence of hepatic cancer and the high number of liver transplants. So far, an effective treatment has not been implemented in the clinic. Despite its importance, hepatic IRI has not attracted much interest as an inflammatory disease, and only a few reviews addressed it from a therapeutic perspective with drug delivery nanosystems. In the last decades, drug delivery nanosystems have proved to be a major asset in therapy because of their ability to optimize drug delivery, either by passive or active targeting. Passive targeting is achieved through the enhanced permeability and retention (EPR) effect, a main feature in inflammation that allows the accumulation of the nanocarriers in inflammation sites, enabling a higher efficacy of treatment than conventional therapies. These systems also can be actively targeted to specific compounds, such as inflammatory markers and overexpressed receptors in immune system intermediaries, allowing an even more specialized therapy that have already showed encouraging results. In this manuscript, we review drug delivery nanosystems designed for hepatic IRI treatment, addressing their current state in clinical trials, discussing the main hurdles that hinder their successful translation to the market and providing some suggestions that could potentially advance their clinical translation. Graphical abstract: [Figure not available: see fulltext.].

The genetic susceptibility linking preterm birth and periodontal disease a review, Couceiroa, Joana, Grosso {Ana Rita}, Baptista {Pedro V. }, Mendes {Jose J. }, Fernandes {Alexandra R. }, and Quintas Alexandre , Annals of Medicine, apr, Volume 53, Number SI, p.S16–S17, (2021) Abstract
n/a
Liposomal nanosystems in rheumatoid arthritis, Ferreira-Silva, Margarida, Faria-Silva Catarina, Baptista {Pedro Viana}, Fernandes Eduarda, Fernandes {Alexandra Ramos}, and Corvo {Maria Luísa} , Pharmaceutics, apr, Volume 13, Number 4, (2021) Abstract

Rheumatoid arthritis (RA) is an autoimmune disease that affects the joints and results in reduced patient quality of life due to its chronic nature and several comorbidities. RA is also associated with a high socioeconomic burden. Currently, several available therapies minimize symptoms and prevent disease progression. However, more effective treatments are needed due to current therapies’ severe side-effects, especially under long-term use. Drug delivery systems have demonstrated their clinical importance—with several nanocarriers present in the market—due to their capacity to improve therapeutic drug index, for instance, by enabling passive or active targeting. The first to achieve market authorization were liposomes that still represent a considerable part of approved delivery systems. In this manuscript, we review the role of liposomes in RA treatment, address preclinical studies and clinical trials, and discuss factors that could hamper a successful clinical translation. We also suggest some alterations that could potentially improve their progression to the market.

2020
The intracellular number of magnetic nanoparticles modulates the apoptotic death pathway after magnetic hyperthermia treatment, Beola, Lilianne, Asín Laura, Roma-Rodrigues Catarina, Fernandez-Afonso Yilian, Fratila {Raluca M. }, Serantes David, Ruta Sergiu, Chantrell {Roy W. }, Fernandes {Alexandra R. }, Baptista {Pedro V. }, {de la Fuente} {Jesus M. }, Grazu Valeria, and Gutierrez Lucía , ACS Applied Materials & Interfaces, sep, Volume 12, Number 39, p.43474–43487, (2020) Abstract

Magnetic hyperthermia is a cancer treatment based on the exposure of magnetic nanoparticles to an alternating magnetic field in order to generate local heat. In this work, 3D cell culture models were prepared to observe the effect that a different number of internalized particles had on the mechanisms of cell death triggered upon the magnetic hyperthermia treatment. Macrophages were selected by their high capacity to uptake nanoparticles. Intracellular nanoparticle concentrations up to 7.5 pg Fe/cell were measured both by elemental analysis and magnetic characterization techniques. Cell viability after the magnetic hyperthermia treatment was decreased to <25% for intracellular iron contents above 1 pg per cell. Theoretical calculations of the intracellular thermal effects that occurred during the alternating magnetic field application indicated a very low increase in the global cell temperature. Different apoptotic routes were triggered depending on the number of internalized particles. At low intracellular magnetic nanoparticle amounts (below 1 pg Fe/cell), the intrinsic route was the main mechanism to induce apoptosis, as observed by the high Bax/Bcl-2 mRNA ratio and low caspase-8 activity. In contrast, at higher concentrations of internalized magnetic nanoparticles (1−7.5 pg Fe/cell), the extrinsic route was observed through the increased activity of caspase-8. Nevertheless, both mechanisms may coexist at intermediate iron concentrations. Knowledge on the different mechanisms of cell death triggered after the magnetic hyperthermia treatment is fundamental to understand the biological events activated by this procedure and their role in its effectiveness.

Correction to: Nano-in-Micro Sildenafil Dry Powder Formulations for the Treatment of Pulmonary Arterial Hypertension Disorders: The Synergic Effect of POxylated Polyurea Dendrimers, PLGA, and Cholesterol (Part. Part. Syst. Charact, (2020), 37, (1900447), , Restani, {Rita B. }, Tavares {Márcia T. }, Pires {Rita F. }, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Casimiro Teresa, Bonifácio {Vasco D. B. }, and Aguiar-Ricardo Ana , Particle and Particle Systems Characterization, nov, Volume 37, Number 11, (2020) Abstract

Part. Part. Syst. Charact. 2020, 37, 1900447 In the originally published manuscript, the author Márcia T. Tavares was omitted. The author is hereby added in the author byline and is associated with the first affiliation.

Water safety screening via multiplex LAMP-Au-nanoprobe integrated approach, Oliveira, {Beatriz B. }, Veigas Bruno, Carlos {Fábio Ferreira}, Sánchez-Melsió Alexandre, Balcázar {José Luís}, Borrego {Carles M. }, and Baptista {Pedro Viana} , Science of the Total Environment, nov, Volume 741, (2020) Abstract

Contaminated water resources remain a major global concern regarding public health. The majority of water safety protocols include indicators of microbial contamination to evaluate the potential risk to public health and are key elements of quality guidelines. Among these, markers for total coliforms and fecal coliforms are strong indicators of co-contamination with other pathogens. Traditional methods, recurring to slow and cumbersome culture-based approaches, have been gradually replaced by molecular methods, capable of faster and more specific screening. These are usually PCR-based methods that may allow for multiple pathogen detection but require dedicated laboratory equipment, hindering the rapid on-site assessment. Here, we used a multiplex Loop-Mediated Isothermal Amplification (mLAMP) strategy for the amplification of two markers associated with the contamination by total and fecal coliforms (e.g. Escherichia coli) — lacZ and uidA genes, respectively — thus allowing for single tube multiplex detection. The mLAMP products were then subject to an Au-nanoprobe colorimetric detection assay for precise discrimination of targets. This approach was validated in 22 water samples that were also screened for the presence of lacZ and uidA using standard and quantitative PCR, with the capability for discriminating the contamination level, e.g. a semi-quantitative evaluation of water quality.

Nano-in-Micro Sildenafil Dry Powder Formulations for the Treatment of Pulmonary Arterial Hypertension Disorders: The Synergic Effect of POxylated Polyurea Dendrimers, PLGA, and Cholesterol, Restani, {Rita B. }, Pires {Rita F. }, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Casimiro Teresa, Bonifácio {Vasco D. B. }, and Aguiar-Ricardo Ana , Particle and Particle Systems Characterization, jun, Volume 37, Number 6, (2020) Abstract

POXylated polyurea dendrimer nanoparticles (PUREG4OOx48) are loaded with sildenafil (SDF) by a supercritical carbon dioxide–assisted (scCO2) impregnation. Further supercritical CO2-assisted spray drying (SASD) leads to hybrid nano-in-micro dry powder formulations that are investigated aiming at efficient pulmonary delivery of SDF in pulmonary arterial hypertension treatment. This is the first report of the production of poly(D,L-lactide-co-glycolide)-cholesterol (PLGA-Chol) microparticles processed by SASD. The optimized formulation of nano-in-microparticles is composed of PLGA, Chol, and PUREG4OOx48, loaded with SDF solutions in a 77:23 ratio (PLGA-Chol:dendrimer, w/w). The dry powders are fully characterized and found to be highly biodegradable and biocompatible, and the SDF release profile evaluates under different pH values. The median mass average diameter (MMAD) of the nano-in-micro systems varies between 2.57 and 5 µm and the fine particle fraction (FPF) between 36% and 29% for PUREG4OMeOx48[PLGA-Chol] and PUREG4OEtOx48[PLGA-Chol], respectively. The data validate the potential use of these new formulations in inhalation therapy. In vitro studies are also carried out in order to evaluate the effect of the free drug in cell viability and formulations cytotoxicity.

Porphyrin Pigments in Polychaeta: Explorations on the Evolution of Haem Metabolism in Marine Eumetazoans, Martins, C., Rodrigo {A. P. }, Madeira C., D'Ambrosio M., Goncalves C., Parola {A. J. }, Grosso {A. R. }, Baptista {P. V. }, Fernandes {A. R. }, and Costa {P. M. } , jan, Volume 18, (2020) Abstract
n/a
Improving the Anti-inflammatory Response via Gold Nanoparticle Vectorization of CO-Releasing Molecules, Fernandes, {Alexandra R. }, c}a-Martins Inês Mendon{\c, Santos {Marino F. A. }, Raposo {Luís R. }, Mendes Rita, Marques Joana, Romão {Carlos C. }, Romão {Maria João}, Santos-Silva Teresa, and Baptista {Pedro V. } , ACS Biomaterials Science and Engineering, feb, Volume 6, Number 2, p.1090–1101, (2020) Abstract

CO-releasing molecules (CORMs) have been widely studied for their anti-inflammatory, antiapoptotic, and antiproliferative effects. CORM-3 is a water-soluble Ru-based metal carbonyl complex, which metallates serum proteins and readily releases CO in biological media. In this work, we evaluated the anti-inflammatory and wound-healing effects of gold nanoparticles-CORM-3 conjugates, AuNPs@PEG@BSA·Ru(CO)x, exploring its use as an efficient CO carrier. Our results suggest that the nanoformulation was capable of inducing a more pronounced cell effect, at the anti-inflammatory level and a faster tissue repair, probably derived from a rapid cell uptake of the nanoformulation that results in the increase of CO inside the cell.

2019
Targeting cancer resistance via multifunctional gold nanoparticles, Pedrosa, Pedro, Corvo Luísa} {M., Ferreira-Silva Margarida, Martins Pedro, Carvalheiro {Manuela Colla}, Costa {Pedro M. }, Martins Carla, Martins {L. M. D. R. S., Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, nov, Volume 20, Number 21, (2019) Abstract

Resistance to chemotherapy is a major problem facing current cancer therapy, which is continuously aiming at the development of new compounds that are capable of tackling tumors that developed resistance toward common chemotherapeutic agents, such as doxorubicin (DOX). Alongside the development of new generations of compounds, nanotechnology-based delivery strategies can significantly improve the in vivo drug stability and target specificity for overcoming drug resistance. In this study, multifunctional gold nanoparticles (AuNP) have been used as a nanoplatform for the targeted delivery of an original anticancer agent, a Zn(II) coordination compound [Zn(DION)2]Cl2 (ZnD), toward better efficacy against DOX-resistant colorectal carcinoma cells (HCT116 DR). Selective delivery of the ZnD nanosystem to cancer cells was achieved by active targeting via cetuximab, NanoZnD, which significantly inhibited cell proliferation and triggered the death of resistant tumor cells, thus improving efficacy. In vivo studies in a colorectal DOX-resistant model corroborated the capability of NanoZnD for the selective targeting of cancer cells, leading to a reduction of tumor growth without systemic toxicity. This approach highlights the potential of gold nanoformulations for the targeting of drug-resistant cancer cells.

Ionic Liquids and Salts from Ibuprofen as Promising Innovative Formulations of an Old Drug, Santos, {Miguel M. }, Raposo {Luís R. }, c}alo Carrera {Gon{\c V. S. M. }, Costa Alexandra, Dionísio Madalena, Baptista {Pedro V. }, Fernandes {Alexandra R. }, and Branco {Luís C. } , Chemmedchem, may, Volume 14, Number 9, (2019) Abstract

Herein we report the synthesis of novel ionic liquids (ILs) and organic salts by combining ibuprofen as anion with ammonium, imidazolium, or pyridinium cations. The methodology consists of an acid–base reaction of neutral ibuprofen with cation hydroxides, which were previously prepared by anion exchange from the corresponding halide salts with Amberlyst A-26(OH). In comparison with the parent drug, these organic salts display higher solubility in water and biological fluids and a smaller degree of polymorphism, which in some cases was completely eliminated. With the exception of [C 16 Pyr][Ibu] and [N 1,1,2,2OH1 ][Ibu], the prepared salts did not affect the viability of normal human dermal fibroblasts or ovarian carcinoma (A2780) cells. Therefore, these ibuprofen-based ionic liquids may be very promising lead candidates for the development of effective formulations of this drug.

New lessons from ancient life: marine invertebrates as a source of new drugs, Rodrigo, {A. P. }, Martins C., Tanoeiro L., Casaca M., Lopes {A. R. }, Parola {A. J. }, Matos {A. P. }, Baptista {P. V. }, Fernandes {A. R. }, and Costa {P. M. } , Annals of Medicine, mar, Volume 51, Number Suppl.1, p.S45–S46, (2019) Abstract
n/a
Antibody modified gold nanoparticles for fast colorimetric screening of rheumatoid arthritis, Veigas, Bruno, Matias Ana, Calmeiro Tomás, Fortunato Elvira, Fernandes {Alexandra R. }, and Baptista {Pedro Viana} , Analyst, jun, Volume 144, Number 11, p.3613–3619, (2019) Abstract

Rheumatoid arthritis (RA) is a systemic autoimmune disease characterized by chronic joint inflammation and one of the main causes of chronic disability worldwide with high prevalence in the ageing population. RA is characterized by autoantibody production, synovial inflammation and bone destruction, and the most accepted biomarker is rheumatoid factor (RF) autoantibodies. In this work, we developed a low-cost approach for the detection and quantification of the RF marker. This colorimetric immunosensor is based on gold nanoprobe crosslinking that results in extensive aggregation in the presence of the pentameric IgM RF. Aggregation of the nanoconjugates yields a color change from red to purple that can be easily observed by the naked eye. The interaction between nanoconjugates and the specific target was confirmed via dynamic light scattering (DLS), Raman spectroscopy and atomic force microscopy (AFM) imaging. This conceptual system shows a LOD of 4.15 UA mL-1 IgM RF (clinical threshold is set for 20 IU mL-1). The one-step biosensor strategy herein proposed is much faster than conventional detection techniques, without the need for secondary antibodies, additional complex washing or signal amplification protocols. To the best of our knowledge this is the first report on target induced aggregation of gold nanoprobes for quantitative colorimetric autoantibody detection.

GLUT1 and GLUT3 involvement in anthocyanin gastric transport- Nanobased targeted approach, Oliveira, Hélder, Roma-Rodrigues Catarina, Santos Ana, Veigas Bruno, Brás Natércia, Faria Ana, c}ão Calhau Concei{\c, {de Freitas} Victor, Baptista {Pedro V. }, Mateus Nuno, Fernandes {Alexandra R. }, and Fernandes Iva , Scientific Reports, dec, Volume 9, Number 1, (2019) Abstract

Anthocyanins may protect against a myriad of human diseases. However few studies have been conducted to evaluate their bioavailability so their absorption mechanism remains unclear. This study aimed to evaluate the role of two glucose transporters (GLUT1 and GLUT3) in anthocyanins absorption in the human gastric epithelial cells (MKN-28) by using gold nanoparticles to silence these transporters. Anthocyanins were purified from purple fleshed sweet potatoes and grape skin. Silencing of GLUT1 and/or GLUT3 mRNA was performed by adding AuNP@GLUT1 and/or AuNP@GLUT3 to MKN-28 cells. Downregulation of mRNA expression occurred concomitantly with the reduction in protein expression. Malvidin-3-O-glucoside (Mv3glc) transport was reduced in the presence of either AuNP@GLUT1 and AuNP@GLUT3, and when both transporters were blocked simultaneously. Peonidin-3-(6′-hydroxybenzoyl)-sophoroside-5-glucoside (Pn3HBsoph5glc) and Peonidin-3-(6′-hydroxybenzoyl-6″-caffeoyl)-sophoroside-5-glucoside (Pn3HBCsoph5glc) were assayed to verify the effect of the sugar moiety esterification at glucose B in transporter binding. Both pigments were transported with a lower transport efficiency compared to Mv3glc, probably due to steric hindrance of the more complex structures. Interestingly, for Pn3HBCsoph5glc although the only free glucose is at C5 and the inhibitory effect of the nanoparticles was also observed, reinforcing the importance of glucose on the transport regardless of its position or substitution pattern. The results support the involvement of GLUT1 and GLUT3 in the gastric absorption of anthocyanins.

2018
POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy, Restani, {Rita B. }, Pires {Rita F. }, Tolmatcheva Anna, Cabral Rita, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Casimiro Teresa, Bonifácio {Vasco D. B. }, and Aguiar-Ricardo Ana , ChemistryOpen, oct, Volume 7, Number 10, p.772–779, (2018) Abstract

POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor, Cordeiro, Mílton, Otrelo-Cardoso {Ana Rita Castro}, Svergun {Dmitri I. }, Konarev {Petr V. }, Lima {João Carlos}, Santos-Silva Teresa, and Baptista {Pedro Viana} , ACS Chemical Biology, may, Volume 13, Number 5, p.1235–1242, (2018) Abstract

Selective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.

Nano-strategies to fight multidrug resistant bacteria-{"}A Battle of the Titans{"}, Baptista, {Pedro V. }, McCusker {Matthew P. }, Carvalho Andreia, Ferreira {Daniela A. }, Mohan {Niamh M. }, Martins M., and Fernandes {Alexandra R. } , Frontiers in Microbiology, jul, Volume 9, Number JUL, (2018) Abstract

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

Nanoparticles as Delivery Systems in Cancer Therapy: Focus on Gold Nanoparticles and Drugs, Carvalho, Andreia, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Applications of Targeted Nano Drugs and Delivery Systems, jan, Netherlands, p.257–295, (2018) Abstract

Conventional cancer chemotherapy presents several bottlenecks, such as lack of specificity that impacts healthy tissues, rapid drug metabolism, and both intrinsic/acquired drug resistances varying in patient status, which altogether lead to reduction of efficacy. To overcome these issues and improve efficacy, combination with novel nanotechnology approaches-cancer nanomedicine-in the areas of imaging, diagnosis, and drug delivery are being proposed. These developments have been focused upon the preparation and application of nanoparticles for cancer therapy. Gold nanoparticle (AuNP) applications have been projected for improved imaging, diagnosis, and therapy, due to their exquisite physicochemical and optical properties showing potential applications as drug/gene carriers, photothermal and contrast agents. All these features may potentiate selective drug delivery, thus improving efficacy and reducing side effects. In this chapter, we shall discuss applications of nanoparticles with focus on AuNPs as efficient targeted (drug) delivery systems in cancer therapy.