Publications

Export 59 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Ropio, I., A. C. Baptista, J. P. Nobre, J. Correia, F. Belo, S. Taborda, M. B. M. Faustino, J. P. Borges, A. Kovalenko, and I. Ferreira, "Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes", Org Electron, 2018. AbstractDOI

A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.

Baptista, A. C., I. Ropio, B. Romba, J. P. Nobre, C. Henriques, J. C. Silva, J. I. Martins, J. P. Borges, and I. Ferreira, "Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries", J Mater Chem A, vol. 6, issue 1, pp. 256-265, 2018. AbstractDOI

A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and the support of the electrodes. Polymer composites of polypyrrole (PPy) and polyaniline (PANI) with cellulose acetate (CA) electrospun matrix were produced by in situ chemical oxidation of pyrrole and aniline on the CA fibers. The structure (CA/PPy|CA|CA/PANI) generated a power density of 1.7 mW g−1 in the presence of simulated biological fluids, which is a new and significant contribution to the domain of medical batteries and fully organic devices for biomedical applications.

Soares, P. I. P., A. I. Sousa, J. C. Silva, I. M. M. Ferreira, C. M. M. Novo, and J. P. Borges, "Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling", Carbohydr Polym, vol. 147, pp. 304-312, 2016. AbstractDOI

In the present work, two drug delivery systems were produced by encapsulating doxorubicin into chitosan and O-HTCC (ammonium-quaternary derivative of chitosan) nanoparticles. The results show that doxorubicin release is independent of the molecular weight and is higher at acidic pH (4.5) than at physiological pH. NPs with an average hydrodynamic diameter bellow 200 nm are able to encapsulate up to 70% and 50% of doxorubicin in the case of chitosan and O-HTCC nanoparticles, respectively. O-HTCC nanoparticles led to a higher amount of doxorubicin released than chitosan nanoparticles, for the same experimental conditions, although the release mechanism was not altered. A burst effect occurs within the first hours of release, reaching a plateau after 24 h. Fitting mathematical models to the experimental data led to a concordant release mechanism between most samples, indicating an anomalous or mixed release, which is in agreement with the swelling behavior of chitosan described in the literature.

Contreras, J., R. Martins, P. Wojcik, S. Filonovich, H. Águas, L. Gomes, E. Fortunato, and I. Ferreira, "Color sensing ability of an amorphous silicon position sensitive detector array system", Sensor Actuat. A-Phys., vol. 205, pp. 26-37, 2014. AbstractDOI

The color sensing ability of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) was analyzed. Besides being used to reproduce a 3D profile of highly reflective surfaces, here we show that it can also differentiate primary red, green, blue (RGB) and derived colors. This was realized by using an incident beam with a RGB color combination and adequate integration times taking into account that a color surface mostly reflects its corresponding color. A mean colorimetric error of 25.7 was obtained. Overall, we show that color detection is possible via the use of this sensor array system, composed by a simpler amorphous silicon pin junction.

Perdigão, P., B. M. Faustino, J. Faria, J. P. Canejo, J. P. Borges, I. Ferreira, and A. C. Baptista, "Conductive electrospun polyaniline/polyvinylpyrrolidone nanofibers: Electrical and morphological characterization of new yarns for electronic textiles", Fibers, vol. 8, pp. 24, 2020.
Faustino, B. M. M., D. Gomes, J. Faria, T. Juntunen, G. Gaspar, C. Bianchi, A. Almeida, A. C. Marques, I. Tittonen, and I. Ferreira, "CuI p-type thin films for highly transparent thermoelectric pn modules", Sci Rep, vol. 8, issue 1, pp. 6867-6867, 2018. AbstractDOI

Developments in thermoelectric (TE) transparent p-type materials are scarce and do not follow the trend of the corresponding n-type materials – a limitation of the current transparent thermoelectric devices. P-type thermoelectric thin films of CuI have been developed by three different methods in order to maximise optical transparency (>70% in the visible range), electrical (σ = 1.1 × 104 Sm−1) and thermoelectric properties (ZT = 0.22 at 300 K). These have been applied in the first planar fully transparent p-n type TE modules where gallium-doped zinc oxide (GZO) thin films were used as the n-type element and indium thin oxide (ITO) thin films as electrodes. A thorough study of power output in single elements and p-n modules electrically connected in series and thermally connected in parallel is inclosed. This configuration allows for a whole range of highly transparent thermoelectric applications.

Cristovão, A. F., D. Sousa, F. Silvestre, I. Ropio, A. Gaspar, C. Henriques, A. Velhinho, A. C. Baptista, M. Faustino, and I. Ferreira, "Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties", 3D Print Med, vol. 5, pp. 12, 2019.
D
Mendes, M. J., A. Araújo, A. Vicente, H. Águas, I. Ferreira, E. Fortunato, and R. Martins, "Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells", Nano Energy, vol. 26, pp. 286-296, 2016. AbstractDOI

The interaction of light with wavelength-sized photonic nanostructures is highly promising for light management applied to thin-film photovoltaics. Several light trapping effects come into play in the wave optics regime of such structures that crucially depend on the parameters of the photonic and absorbing elements. Thus, multi-parameter optimizations employing exact numerical models, as performed in this work, are essential to determine the maximum photocurrent enhancement that can be produced in solar cells.

Generalized spheroidal geometries and high-index dielectric materials are considered here to model the design of the optical elements providing broadband absorption enhancement in planar silicon solar cells. The physical mechanisms responsible for such enhancement are schematized in a spectral diagram, providing a deeper understanding of the advantageous characteristics of the optimized geometries. The best structures, composed of TiO2 half-spheroids patterned on the cells' top surface, yield two times higher photocurrent (up to 32.5 mA/cm2 in 1.5 µm thick silicon layer) than the same devices without photonic schemes.

These results set the state-of-the-art closer to the theoretical Lambertian limit. In addition, the considered light trapping designs are not affected by the traditional compromise between absorption enhancement versus current degradation by recombination, which is a key technological advantage.

Sulim, O., R. Ribeiro, I. Esteves, C. Antunes, A. Garate, P. Duarte, I. Ferreira, J. Mota, and M. Plaza, Design of structured adsorbents for aplications in gas adsorption processes - Conventional shaping vs 3D-Printed formulation, , 5-10 March, 2017. Abstract

Microporous materials highly activated and with potential to be used as adsorbents in many applications for gas
separation/purification are usually available as powders. These solids usually have a great and reversible gas
uptake, high gas selectivity, good chemical and thermal stability, but are unsuitable to be used in gas adsorption
processes, such as Pressure Swing Adsorption (PSA) or Simulated Moving Bed (SMB).
Zeolites, carbons and more recently metal-organic frameworks (MOFs) are examples of those materials. Their
use in adsorption-based processes are dependent of their upgrading from powders (micrometer scale) to
particles (pellets, spheres or granules at millimeter scale). This would overcome large pressure drops and
consequent energy consumptions when packing adsorbent columns in those processes. Thus, shaping
adsorbents is an important step to use them in industry, although it greatly affects their capacity and selectivity
towards a specific gas separation.
In this work, we explore techniques to shape powdered adsorbents, followed by their textural and mechanical
characterizations, and the study of their adsorption properties towards the main components of post-combustion
flues gases (CO2 and N2). Materials densification is proposed by employing two approaches:
- Conventional shaping through binderless mechanical compression and binder-containing extrusion; and
- Formulation by 3D printing (or additive manufacturing) to produce packed bed morphologies that
precisely replicate computer aided design (CAD) models.
Porous separation media are important for fluid-solid contacting in many unit operations, including adsorption.
Due to practical limitations, media particles are typically packed randomly into a column in a shaped form,
allowing fluid to flow through the interstitial voids. Key to the effectiveness of packed columns are the flowrelated properties of mass transfer, fluid distribution and dispersion, and back pressure, which in turn depend
upon packing geometry. Until now, no alternative was found to overcome this limitation and have optimal
ordered packing arrangements at the micron scale. 3D-Printing (or additive manufacturing) brings a wide range
of benefits that traditional methods of manufacturing or prototyping simply cannot. With this approach, complex
ordered geometries, that are not possible by conventional extrusion, can be designed and printed for a porous
media, being the equipment resolution the only limiting step to overcome.
The effect of parameters like compression force, particle sieving, binder nature, binder/adsorbent ratio were
firstly studied using conventional shaping techniques, as a basis for the consequent development of 3D-printed
formulations. The structured samples are then characterized and adsorption equilibria studies are performed on
them to evaluate their performance as media for gas adsorption separation processes. A volumetric/manometric
adsorption unit built in-house was used for this purpose. Relevant experimental data is obtained, which allows to
conclude that 3D-printed media can be an alternative porous media for application in gas adsorption processes.

Baptista, A. C., A. M. Botas, A. P. C. Almeida, A. T. Nicolau, B. P. Falcão, M. J. Soares, J. P. Leitão, R. Martins, J. P. Borges, and I. Ferreira, "Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers", Opt. Mater., vol. 39, pp. 278-281, 2015. AbstractDOI

The influence of Ag nanoparticles (Ag NPs) on the luminescence of electrospun nonwoven mats made of polyvinylpyrrolidone (PVP) has been studied in this work. The PVP fibers incorporating 2.1–4.3 nm size Ag NPs show a significant photoluminescence (PL) band between 580 and 640 nm under 325 nm laser excitation. The down conversion luminescence emission is present even after several hours of laser excitation, which denotes the durability and stability of fibers to consecutive excitations. As so these one-dimensional photonic fibers made using cheap methods is of great importance for organic optoelectronic applications, fluorescent clothing or counterfeiting labels.