Publications

Export 36 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R [S] T U V W X Y Z   [Show ALL]
S
Marques, A. C., D. Miglietta, G. Gaspar, A. C. Baptista, A. Gaspar, A. Perdigão, I. Soares, C. Bianchi, D. Sousa, B. M. Morais Faustino, V. S. Amaral, T. Santos, A. P. Gonçalves, R. C. da Silva, F. Giorgis, and I. Ferreira, " Synthesis of thermoelectric magnesium-silicide pastes for 3D printing, electrospinning and low-pressure spray", Materials for Renewable and Sustainable Energy, pp. 8-21, 2019.
A
Gaspar, D., A. C. Pimentel, M. J. Mendes, T. Mateus, B. P. Falcão, J. P. Leitão, J. Soares, A. Araújo, A. Vicente, S. A. Filonovich, H. Águas, R. Martins, and I. Ferreira, "Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films", Plasmonics, vol. 9, issue 5, pp. 1015–1023, 2014. AbstractDOI

Silver (Ag) and tin (Sn) nanoparticles (NPs) were deposited by thermal evaporation onto heated glass substrates with a good control of size, shape and surface coverage. This process has the advantage of allowing the fabrication of thin-film solar cells with incorporated NPs without vacuum break, since it does not require chemical processes or post-deposition annealing. The X-ray diffraction, TEM and SEM properties are correlated with optical measurements and amorphous silicon hydrogenated (a-Si:H) films deposited on top of both types of NPs show enhanced absorbance in the near-infrared. The results are interpreted with electromagnetic modelling performed with Mie theory. A broad emission in the near-infrared region is considerably increased after covering the Ag nanoparticles with an a-Si:H layer. Such effect may be of interest for possible down-conversion mechanisms in novel photovoltaic devices.

Soares, P. I. P., I. M. M. Ferreira, and J. P. M. R. Borges, "Application of hyperthermia for cancer treatment: recent patents review", Topics in anti-cancer research, USA, Bentham Science Publishers, pp. 342-383, 2014. Abstract

Cancer is one of the main causes of death in the world and its incidence increases every
day. Current treatments are insufficient and present many breaches. Hyperthermia is an old
concept and was early established as a cancer treatment option, mainly in superficial
cancers. More recently, the concept of intracellular hyperthermia emerged wherein magnetic
particles are concentrated at the tumor site and remotely heated using an applied magnetic
field to achieve hyperthermic temperatures (42-45ºC). Many patents have been registered in
this area since the year 2000. This chapter presents the most relevant information organized
in two main categories according to the use or not of nanotechnology.

B
A.Rocha, D. Sousa, I. Ferreira, and M. S. Diniz, "Biochemical responses in Danio rerio following exposure to CdS and ZnS Quantum Dots", Annals of Medicine, vol. 51, pp. 71-71, 2019.
Morawiec, S., M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors", Opt. Express, vol. 22, issue 104, pp. A1059-A1070, 2014. AbstractDOI

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells’ rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 – 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

C
Faria, J., B. Dionísio, I. Soares, A. C. Baptista, A. Marques, L. Gonçalves, A. Bettencourt, C. Baleizão, and I. Ferreira, "Cellulose acetate fibres loaded with daptomycin for metal implant coatings", Carbohydrate Polymers, vol. 276, pp. 118733, 2022.
Baptista, A. C., I. Ropio, B. Romba, J. P. Nobre, C. Henriques, J. C. Silva, J. I. Martins, J. P. Borges, and I. Ferreira, "Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries", J Mater Chem A, vol. 6, issue 1, pp. 256-265, 2018. AbstractDOI

A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and the support of the electrodes. Polymer composites of polypyrrole (PPy) and polyaniline (PANI) with cellulose acetate (CA) electrospun matrix were produced by in situ chemical oxidation of pyrrole and aniline on the CA fibers. The structure (CA/PPy|CA|CA/PANI) generated a power density of 1.7 mW g−1 in the presence of simulated biological fluids, which is a new and significant contribution to the domain of medical batteries and fully organic devices for biomedical applications.

Soares, P. I. P., A. I. Sousa, J. C. Silva, I. M. M. Ferreira, C. M. M. Novo, and J. P. Borges, "Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling", Carbohydr Polym, vol. 147, pp. 304-312, 2016. AbstractDOI

In the present work, two drug delivery systems were produced by encapsulating doxorubicin into chitosan and O-HTCC (ammonium-quaternary derivative of chitosan) nanoparticles. The results show that doxorubicin release is independent of the molecular weight and is higher at acidic pH (4.5) than at physiological pH. NPs with an average hydrodynamic diameter bellow 200 nm are able to encapsulate up to 70% and 50% of doxorubicin in the case of chitosan and O-HTCC nanoparticles, respectively. O-HTCC nanoparticles led to a higher amount of doxorubicin released than chitosan nanoparticles, for the same experimental conditions, although the release mechanism was not altered. A burst effect occurs within the first hours of release, reaching a plateau after 24 h. Fitting mathematical models to the experimental data led to a concordant release mechanism between most samples, indicating an anomalous or mixed release, which is in agreement with the swelling behavior of chitosan described in the literature.

Cristovão, A. F., D. Sousa, F. Silvestre, I. Ropio, A. Gaspar, C. Henriques, A. Velhinho, A. C. Baptista, M. Faustino, and I. Ferreira, "Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties", 3D Print Med, vol. 5, pp. 12, 2019.
D
Sulim, O., R. Ribeiro, I. Esteves, C. Antunes, A. Garate, P. Duarte, I. Ferreira, J. Mota, and M. Plaza, Design of structured adsorbents for aplications in gas adsorption processes - Conventional shaping vs 3D-Printed formulation, , 5-10 March, 2017. Abstract

Microporous materials highly activated and with potential to be used as adsorbents in many applications for gas
separation/purification are usually available as powders. These solids usually have a great and reversible gas
uptake, high gas selectivity, good chemical and thermal stability, but are unsuitable to be used in gas adsorption
processes, such as Pressure Swing Adsorption (PSA) or Simulated Moving Bed (SMB).
Zeolites, carbons and more recently metal-organic frameworks (MOFs) are examples of those materials. Their
use in adsorption-based processes are dependent of their upgrading from powders (micrometer scale) to
particles (pellets, spheres or granules at millimeter scale). This would overcome large pressure drops and
consequent energy consumptions when packing adsorbent columns in those processes. Thus, shaping
adsorbents is an important step to use them in industry, although it greatly affects their capacity and selectivity
towards a specific gas separation.
In this work, we explore techniques to shape powdered adsorbents, followed by their textural and mechanical
characterizations, and the study of their adsorption properties towards the main components of post-combustion
flues gases (CO2 and N2). Materials densification is proposed by employing two approaches:
- Conventional shaping through binderless mechanical compression and binder-containing extrusion; and
- Formulation by 3D printing (or additive manufacturing) to produce packed bed morphologies that
precisely replicate computer aided design (CAD) models.
Porous separation media are important for fluid-solid contacting in many unit operations, including adsorption.
Due to practical limitations, media particles are typically packed randomly into a column in a shaped form,
allowing fluid to flow through the interstitial voids. Key to the effectiveness of packed columns are the flowrelated properties of mass transfer, fluid distribution and dispersion, and back pressure, which in turn depend
upon packing geometry. Until now, no alternative was found to overcome this limitation and have optimal
ordered packing arrangements at the micron scale. 3D-Printing (or additive manufacturing) brings a wide range
of benefits that traditional methods of manufacturing or prototyping simply cannot. With this approach, complex
ordered geometries, that are not possible by conventional extrusion, can be designed and printed for a porous
media, being the equipment resolution the only limiting step to overcome.
The effect of parameters like compression force, particle sieving, binder nature, binder/adsorbent ratio were
firstly studied using conventional shaping techniques, as a basis for the consequent development of 3D-printed
formulations. The structured samples are then characterized and adsorption equilibria studies are performed on
them to evaluate their performance as media for gas adsorption separation processes. A volumetric/manometric
adsorption unit built in-house was used for this purpose. Relevant experimental data is obtained, which allows to
conclude that 3D-printed media can be an alternative porous media for application in gas adsorption processes.