Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films

Citation:
Gaspar, D., A. C. Pimentel, M. J. Mendes, T. Mateus, B. P. Falcão, J. P. Leitão, J. Soares, A. Araújo, A. Vicente, S. A. Filonovich, H. Águas, R. Martins, and I. Ferreira, "Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films", Plasmonics, vol. 9, issue 5, pp. 1015–1023, 2014.

Abstract:

Silver (Ag) and tin (Sn) nanoparticles (NPs) were deposited by thermal evaporation onto heated glass substrates with a good control of size, shape and surface coverage. This process has the advantage of allowing the fabrication of thin-film solar cells with incorporated NPs without vacuum break, since it does not require chemical processes or post-deposition annealing. The X-ray diffraction, TEM and SEM properties are correlated with optical measurements and amorphous silicon hydrogenated (a-Si:H) films deposited on top of both types of NPs show enhanced absorbance in the near-infrared. The results are interpreted with electromagnetic modelling performed with Mie theory. A broad emission in the near-infrared region is considerably increased after covering the Ag nanoparticles with an a-Si:H layer. Such effect may be of interest for possible down-conversion mechanisms in novel photovoltaic devices.

Related External Link