Publications

Export 19 results:
Sort by: Author Title [ Type  (Asc)] Year
Conference Paper
Sulim, O., R. Ribeiro, I. Esteves, C. Antunes, A. Garate, P. Duarte, I. Ferreira, J. Mota, and M. Plaza, Design of structured adsorbents for aplications in gas adsorption processes - Conventional shaping vs 3D-Printed formulation, , 5-10 March, 2017. Abstract

Microporous materials highly activated and with potential to be used as adsorbents in many applications for gas
separation/purification are usually available as powders. These solids usually have a great and reversible gas
uptake, high gas selectivity, good chemical and thermal stability, but are unsuitable to be used in gas adsorption
processes, such as Pressure Swing Adsorption (PSA) or Simulated Moving Bed (SMB).
Zeolites, carbons and more recently metal-organic frameworks (MOFs) are examples of those materials. Their
use in adsorption-based processes are dependent of their upgrading from powders (micrometer scale) to
particles (pellets, spheres or granules at millimeter scale). This would overcome large pressure drops and
consequent energy consumptions when packing adsorbent columns in those processes. Thus, shaping
adsorbents is an important step to use them in industry, although it greatly affects their capacity and selectivity
towards a specific gas separation.
In this work, we explore techniques to shape powdered adsorbents, followed by their textural and mechanical
characterizations, and the study of their adsorption properties towards the main components of post-combustion
flues gases (CO2 and N2). Materials densification is proposed by employing two approaches:
- Conventional shaping through binderless mechanical compression and binder-containing extrusion; and
- Formulation by 3D printing (or additive manufacturing) to produce packed bed morphologies that
precisely replicate computer aided design (CAD) models.
Porous separation media are important for fluid-solid contacting in many unit operations, including adsorption.
Due to practical limitations, media particles are typically packed randomly into a column in a shaped form,
allowing fluid to flow through the interstitial voids. Key to the effectiveness of packed columns are the flowrelated properties of mass transfer, fluid distribution and dispersion, and back pressure, which in turn depend
upon packing geometry. Until now, no alternative was found to overcome this limitation and have optimal
ordered packing arrangements at the micron scale. 3D-Printing (or additive manufacturing) brings a wide range
of benefits that traditional methods of manufacturing or prototyping simply cannot. With this approach, complex
ordered geometries, that are not possible by conventional extrusion, can be designed and printed for a porous
media, being the equipment resolution the only limiting step to overcome.
The effect of parameters like compression force, particle sieving, binder nature, binder/adsorbent ratio were
firstly studied using conventional shaping techniques, as a basis for the consequent development of 3D-printed
formulations. The structured samples are then characterized and adsorption equilibria studies are performed on
them to evaluate their performance as media for gas adsorption separation processes. A volumetric/manometric
adsorption unit built in-house was used for this purpose. Relevant experimental data is obtained, which allows to
conclude that 3D-printed media can be an alternative porous media for application in gas adsorption processes.

Morawiec, S., M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Photocurrent enhancement in thin a-Si: H solar cells via plasmonic light trapping", CLEO: Science and Innovations: Optical Society of America, 8-13 Jun, 2014. Abstract

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the self-assembled silver nanoparticles incorporated in the cells’ back reflector.

Strohmeier, P., C. Honnet, H. Pernet-Wilson, M. Teyssier, B. Fruchard, A. C. Baptista, and J. Steimle, "PolySense: How to Make Electrically Functional Textiles", CHI Conference on Human Factors in Computing Systems , 2020.
Bari, M., J. Loureiro, M. Pudas, K. Tappura, K. Jaakola, M. Ruoho, I. Tittonen, S. Volz, C. Pavan, K. Costabello, D. Bollen, M. Haslam, and I. Ferreira, "TransFlexTeg: Large area transparent thin film thermoelectric devices for smart window and flexible applications", 14th European Conference on Thermoelectrics, ECT 2016, 20-23 Sep, 2016. Abstract

The main objective of TransFlexTeg is to develop an innovative large area distributed sensor network integrating transparent thin film thermoelectric devices and sensors for multifunctional smart windows and flexible high impact volume applications. Different breakthrough concepts will be developed: 1) large area high performance transparent thermoelectric thin films deposited on flexible substrates for thermal energy harvesting; 2) low cost high throughput thin film thermal sensors for thermal mapping and gesture sensing; 3) flexible smart windows and walls with energy harvesting, environmental sensing and wireless communication functionalities. This technology aims to demonstrate the functionalities of a smart window able to measure air quality and environmental parameters such as temperature, sun radiation and humidity. The data is automatically collected and can be utilized for controlling heating, cooling and ventilation systems of indoors. Active radio interface enables long range communication and long term data collection with WiFi or a similar base station. The proposed concept of smart windows replaces several conventional sensors with a distributed sensor network that is integrated invisibly into windows. In addition to the power generated from the thermal energy harvesting, the thermoelectric elements (TE) are also used as temperature sensors that, while being distributed over large area, enable thermal mapping of the area instead of just one or a few values measured from particular points. This smart window can be produced on glass. The active layer itself can be flexible glass layer or polymer sheet, which will significantly broaden the field of applications and improve business opportunities. Both can be manufactured in batch, or in Roll to Roll Atomic Layer Deposition (R2R ALD) process. High environmental impact is expected with savings of more than 25% of the electrical usage of residential homes and office buildings.

Journal Article
Marques, A. C., D. Miglietta, G. Gaspar, A. C. Baptista, A. Gaspar, A. Perdigão, I. Soares, C. Bianchi, D. Sousa, B. M. Morais Faustino, V. S. Amaral, T. Santos, A. P. Gonçalves, R. C. da Silva, F. Giorgis, and I. Ferreira, " Synthesis of thermoelectric magnesium-silicide pastes for 3D printing, electrospinning and low-pressure spray", Materials for Renewable and Sustainable Energy, pp. 8-21, 2019.
Gaspar, D., A. C. Pimentel, M. J. Mendes, T. Mateus, B. P. Falcão, J. P. Leitão, J. Soares, A. Araújo, A. Vicente, S. A. Filonovich, H. Águas, R. Martins, and I. Ferreira, "Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films", Plasmonics, vol. 9, issue 5, pp. 1015–1023, 2014. AbstractDOI

Silver (Ag) and tin (Sn) nanoparticles (NPs) were deposited by thermal evaporation onto heated glass substrates with a good control of size, shape and surface coverage. This process has the advantage of allowing the fabrication of thin-film solar cells with incorporated NPs without vacuum break, since it does not require chemical processes or post-deposition annealing. The X-ray diffraction, TEM and SEM properties are correlated with optical measurements and amorphous silicon hydrogenated (a-Si:H) films deposited on top of both types of NPs show enhanced absorbance in the near-infrared. The results are interpreted with electromagnetic modelling performed with Mie theory. A broad emission in the near-infrared region is considerably increased after covering the Ag nanoparticles with an a-Si:H layer. Such effect may be of interest for possible down-conversion mechanisms in novel photovoltaic devices.

Mendes, M. J., S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids", Nanotechnology, vol. 26, issue 13, pp. 135202, 2015. AbstractDOI

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids.

Morawiec, S., M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors", Opt. Express, vol. 22, issue 104, pp. A1059-A1070, 2014. AbstractDOI

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells’ rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 – 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

Perdigão, P., B. M. Faustino, J. Faria, J. P. Canejo, J. P. Borges, I. Ferreira, and A. C. Baptista, "Conductive electrospun polyaniline/polyvinylpyrrolidone nanofibers: Electrical and morphological characterization of new yarns for electronic textiles", Fibers, vol. 8, pp. 24, 2020.
Esteves, C., G. M. C. Santos, C. Alves, S. I. C. J. Palma, A. R. Porteira, H. M. A. Costa, V. D. Alves, B. M. M. Faustino, I. Ferreira, and H. Gamboa, "Effect of film thickness in gelatine hybrid gels for artificial olfaction", Materials Today Bio, vol. 1, pp. 100002, 2019.