Publications

Export 36 results:
Sort by: Author Title [ Type  (Asc)] Year
Conference Paper
Sulim, O., R. Ribeiro, I. Esteves, C. Antunes, A. Garate, P. Duarte, I. Ferreira, J. Mota, and M. Plaza, Design of structured adsorbents for aplications in gas adsorption processes - Conventional shaping vs 3D-Printed formulation, , 5-10 March, 2017. Abstract

Microporous materials highly activated and with potential to be used as adsorbents in many applications for gas
separation/purification are usually available as powders. These solids usually have a great and reversible gas
uptake, high gas selectivity, good chemical and thermal stability, but are unsuitable to be used in gas adsorption
processes, such as Pressure Swing Adsorption (PSA) or Simulated Moving Bed (SMB).
Zeolites, carbons and more recently metal-organic frameworks (MOFs) are examples of those materials. Their
use in adsorption-based processes are dependent of their upgrading from powders (micrometer scale) to
particles (pellets, spheres or granules at millimeter scale). This would overcome large pressure drops and
consequent energy consumptions when packing adsorbent columns in those processes. Thus, shaping
adsorbents is an important step to use them in industry, although it greatly affects their capacity and selectivity
towards a specific gas separation.
In this work, we explore techniques to shape powdered adsorbents, followed by their textural and mechanical
characterizations, and the study of their adsorption properties towards the main components of post-combustion
flues gases (CO2 and N2). Materials densification is proposed by employing two approaches:
- Conventional shaping through binderless mechanical compression and binder-containing extrusion; and
- Formulation by 3D printing (or additive manufacturing) to produce packed bed morphologies that
precisely replicate computer aided design (CAD) models.
Porous separation media are important for fluid-solid contacting in many unit operations, including adsorption.
Due to practical limitations, media particles are typically packed randomly into a column in a shaped form,
allowing fluid to flow through the interstitial voids. Key to the effectiveness of packed columns are the flowrelated properties of mass transfer, fluid distribution and dispersion, and back pressure, which in turn depend
upon packing geometry. Until now, no alternative was found to overcome this limitation and have optimal
ordered packing arrangements at the micron scale. 3D-Printing (or additive manufacturing) brings a wide range
of benefits that traditional methods of manufacturing or prototyping simply cannot. With this approach, complex
ordered geometries, that are not possible by conventional extrusion, can be designed and printed for a porous
media, being the equipment resolution the only limiting step to overcome.
The effect of parameters like compression force, particle sieving, binder nature, binder/adsorbent ratio were
firstly studied using conventional shaping techniques, as a basis for the consequent development of 3D-printed
formulations. The structured samples are then characterized and adsorption equilibria studies are performed on
them to evaluate their performance as media for gas adsorption separation processes. A volumetric/manometric
adsorption unit built in-house was used for this purpose. Relevant experimental data is obtained, which allows to
conclude that 3D-printed media can be an alternative porous media for application in gas adsorption processes.

Morawiec, S., M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Photocurrent enhancement in thin a-Si: H solar cells via plasmonic light trapping", CLEO: Science and Innovations: Optical Society of America, 8-13 Jun, 2014. Abstract

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the self-assembled silver nanoparticles incorporated in the cells’ back reflector.

Journal Article
Marques, A. C., D. Miglietta, G. Gaspar, A. C. Baptista, A. Gaspar, A. Perdigão, I. Soares, C. Bianchi, D. Sousa, B. M. Morais Faustino, V. S. Amaral, T. Santos, A. P. Gonçalves, R. C. da Silva, F. Giorgis, and I. Ferreira, " Synthesis of thermoelectric magnesium-silicide pastes for 3D printing, electrospinning and low-pressure spray", Materials for Renewable and Sustainable Energy, pp. 8-21, 2019.
Mendes, D. N. D. L., A. Gaspar, I. Ferreira, J. P. B. Mota, and R. P. P. L. Ribeiro, "3D-printed hybrid zeolitic/carbonaceous electrically conductive adsorbent structures", Chemical Engineering Research and Design, vol. 174, pp. 442-453, 2021.
Gaspar, D., A. C. Pimentel, M. J. Mendes, T. Mateus, B. P. Falcão, J. P. Leitão, J. Soares, A. Araújo, A. Vicente, S. A. Filonovich, H. Águas, R. Martins, and I. Ferreira, "Ag and Sn Nanoparticles to Enhance the Near-Infrared Absorbance of a-Si:H Thin Films", Plasmonics, vol. 9, issue 5, pp. 1015–1023, 2014. AbstractDOI

Silver (Ag) and tin (Sn) nanoparticles (NPs) were deposited by thermal evaporation onto heated glass substrates with a good control of size, shape and surface coverage. This process has the advantage of allowing the fabrication of thin-film solar cells with incorporated NPs without vacuum break, since it does not require chemical processes or post-deposition annealing. The X-ray diffraction, TEM and SEM properties are correlated with optical measurements and amorphous silicon hydrogenated (a-Si:H) films deposited on top of both types of NPs show enhanced absorbance in the near-infrared. The results are interpreted with electromagnetic modelling performed with Mie theory. A broad emission in the near-infrared region is considerably increased after covering the Ag nanoparticles with an a-Si:H layer. Such effect may be of interest for possible down-conversion mechanisms in novel photovoltaic devices.

Neves, N., A. Lagoa, J. Calado, B. A. M. do Rego, E. Fortunato, R. Martins, and I. Ferreira, "Al-doped ZnO nanostructured powders by emulsion detonation synthesis – Improving materials for high quality sputtering targets manufacturing", J. Eur. Ceram. Soc., vol. 34, issue 10, pp. 2325-2338, 2014. AbstractDOI

Emulsion detonation synthesis method was used to produce undoped and Al-doped ZnO nanostructured powders (0.5–2.0 wt.% Al2O3). The synthesized powders present a controlled composition and a morphology which is independent on the doping level. The XRD results indicate wurtzite as the single phase for undoped ZnO and the presence of gahnite as secondary phase for Al-doped ZnO powders. The sintering behavior of each powder was studied based on their linear shrinkage and shrinkage rate curves, showing the high sinterability of the powders. Activation energies for densification in the earlier stage were calculated for all compositions and possible sintering mechanisms are suggested depending on the doping level. The high chemical homogeneity and sinterability and the lower electrical resistivity of the bulk Al-doped sintered samples demonstrates the feasibility of emulsion detonation synthesis for the production of high quality Al-doped ZnO powders to be used in ceramic sputtering targets manufacture.

Mendes, M. J., S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids", Nanotechnology, vol. 26, issue 13, pp. 135202, 2015. AbstractDOI

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids.

Morawiec, S., M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors", Opt. Express, vol. 22, issue 104, pp. A1059-A1070, 2014. AbstractDOI

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells’ rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 – 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

Lima, N., A. C. Baptista, B. M. M. Faustino, S. Taborda, A. Marques, and I. Ferreira, "Carbon threads sweat-based supercapacitors for electronic textiles", Scientific reports, vol. 10, pp. 1-9, 2020.
Faria, J., B. Dionísio, I. Soares, A. C. Baptista, A. Marques, L. Gonçalves, A. Bettencourt, C. Baleizão, and I. Ferreira, "Cellulose acetate fibres loaded with daptomycin for metal implant coatings", Carbohydrate Polymers, vol. 276, pp. 118733, 2022.