Publications

Export 15 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Marques, A. C., D. Miglietta, G. Gaspar, A. C. Baptista, A. Gaspar, A. Perdigão, I. Soares, C. Bianchi, D. Sousa, B. M. Morais Faustino, V. S. Amaral, T. Santos, A. P. Gonçalves, R. C. da Silva, F. Giorgis, and I. Ferreira, " Synthesis of thermoelectric magnesium-silicide pastes for 3D printing, electrospinning and low-pressure spray", Materials for Renewable and Sustainable Energy, pp. 8-21, 2019.
A.Rocha, D. Sousa, I. Ferreira, and M. S. Diniz, "Biochemical responses in Danio rerio following exposure to CdS and ZnS Quantum Dots", Annals of Medicine, vol. 51, pp. 71-71, 2019.
Esteves, C., G. M. C. Santos, C. Alves, S. I. C. J. Palma, A. R. Porteira, H. M. A. Costa, V. D. Alves, B. M. M. Faustino, I. Ferreira, and H. Gamboa, "Effect of film thickness in gelatine hybrid gels for artificial olfaction", Materials Today Bio, vol. 1, pp. 100002, 2019.
Esperança Garcia, D. M., A. S. Taborda Martins Pereira, A. C. Almeida, U. Santana Roma, A. Ben Aissa Soler, P. D. Lacharmoise, I. M. M. das Ferreira, and C. C. D. Simao, "Large-Area Paper Batteries with Ag and Zn/Ag Screen-Printed Electrodes", ACS Omega, vol. 4, pp. 16781−16788, 2019. acsomega.9b01545.pdf
2018
Faustino, B. M. M., D. Gomes, J. Faria, T. Juntunen, G. Gaspar, C. Bianchi, A. Almeida, A. C. Marques, I. Tittonen, and I. Ferreira, "CuI p-type thin films for highly transparent thermoelectric pn modules", Sci Rep, vol. 8, issue 1, pp. 6867-6867, 2018. AbstractDOI

Developments in thermoelectric (TE) transparent p-type materials are scarce and do not follow the trend of the corresponding n-type materials – a limitation of the current transparent thermoelectric devices. P-type thermoelectric thin films of CuI have been developed by three different methods in order to maximise optical transparency (>70% in the visible range), electrical (σ = 1.1 × 104 Sm−1) and thermoelectric properties (ZT = 0.22 at 300 K). These have been applied in the first planar fully transparent p-n type TE modules where gallium-doped zinc oxide (GZO) thin films were used as the n-type element and indium thin oxide (ITO) thin films as electrodes. A thorough study of power output in single elements and p-n modules electrically connected in series and thermally connected in parallel is inclosed. This configuration allows for a whole range of highly transparent thermoelectric applications.

2017
Sulim, O., R. Ribeiro, I. Esteves, C. Antunes, A. Garate, P. Duarte, I. Ferreira, J. Mota, and M. Plaza, Design of structured adsorbents for aplications in gas adsorption processes - Conventional shaping vs 3D-Printed formulation, , 5-10 March, 2017. Abstract

Microporous materials highly activated and with potential to be used as adsorbents in many applications for gas
separation/purification are usually available as powders. These solids usually have a great and reversible gas
uptake, high gas selectivity, good chemical and thermal stability, but are unsuitable to be used in gas adsorption
processes, such as Pressure Swing Adsorption (PSA) or Simulated Moving Bed (SMB).
Zeolites, carbons and more recently metal-organic frameworks (MOFs) are examples of those materials. Their
use in adsorption-based processes are dependent of their upgrading from powders (micrometer scale) to
particles (pellets, spheres or granules at millimeter scale). This would overcome large pressure drops and
consequent energy consumptions when packing adsorbent columns in those processes. Thus, shaping
adsorbents is an important step to use them in industry, although it greatly affects their capacity and selectivity
towards a specific gas separation.
In this work, we explore techniques to shape powdered adsorbents, followed by their textural and mechanical
characterizations, and the study of their adsorption properties towards the main components of post-combustion
flues gases (CO2 and N2). Materials densification is proposed by employing two approaches:
- Conventional shaping through binderless mechanical compression and binder-containing extrusion; and
- Formulation by 3D printing (or additive manufacturing) to produce packed bed morphologies that
precisely replicate computer aided design (CAD) models.
Porous separation media are important for fluid-solid contacting in many unit operations, including adsorption.
Due to practical limitations, media particles are typically packed randomly into a column in a shaped form,
allowing fluid to flow through the interstitial voids. Key to the effectiveness of packed columns are the flowrelated properties of mass transfer, fluid distribution and dispersion, and back pressure, which in turn depend
upon packing geometry. Until now, no alternative was found to overcome this limitation and have optimal
ordered packing arrangements at the micron scale. 3D-Printing (or additive manufacturing) brings a wide range
of benefits that traditional methods of manufacturing or prototyping simply cannot. With this approach, complex
ordered geometries, that are not possible by conventional extrusion, can be designed and printed for a porous
media, being the equipment resolution the only limiting step to overcome.
The effect of parameters like compression force, particle sieving, binder nature, binder/adsorbent ratio were
firstly studied using conventional shaping techniques, as a basis for the consequent development of 3D-printed
formulations. The structured samples are then characterized and adsorption equilibria studies are performed on
them to evaluate their performance as media for gas adsorption separation processes. A volumetric/manometric
adsorption unit built in-house was used for this purpose. Relevant experimental data is obtained, which allows to
conclude that 3D-printed media can be an alternative porous media for application in gas adsorption processes.

2016
Mendes, M. J., A. Araújo, A. Vicente, H. Águas, I. Ferreira, E. Fortunato, and R. Martins, "Design of optimized wave-optical spheroidal nanostructures for photonic-enhanced solar cells", Nano Energy, vol. 26, pp. 286-296, 2016. AbstractDOI

The interaction of light with wavelength-sized photonic nanostructures is highly promising for light management applied to thin-film photovoltaics. Several light trapping effects come into play in the wave optics regime of such structures that crucially depend on the parameters of the photonic and absorbing elements. Thus, multi-parameter optimizations employing exact numerical models, as performed in this work, are essential to determine the maximum photocurrent enhancement that can be produced in solar cells.

Generalized spheroidal geometries and high-index dielectric materials are considered here to model the design of the optical elements providing broadband absorption enhancement in planar silicon solar cells. The physical mechanisms responsible for such enhancement are schematized in a spectral diagram, providing a deeper understanding of the advantageous characteristics of the optimized geometries. The best structures, composed of TiO2 half-spheroids patterned on the cells' top surface, yield two times higher photocurrent (up to 32.5 mA/cm2 in 1.5 µm thick silicon layer) than the same devices without photonic schemes.

These results set the state-of-the-art closer to the theoretical Lambertian limit. In addition, the considered light trapping designs are not affected by the traditional compromise between absorption enhancement versus current degradation by recombination, which is a key technological advantage.

2015
Mendes, M. J., S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids", Nanotechnology, vol. 26, issue 13, pp. 135202, 2015. AbstractDOI

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids.

Baptista, A. C., A. M. Botas, A. P. C. Almeida, A. T. Nicolau, B. P. Falcão, M. J. Soares, J. P. Leitão, R. Martins, J. P. Borges, and I. Ferreira, "Down conversion photoluminescence on PVP/Ag-nanoparticles electrospun composite fibers", Opt. Mater., vol. 39, pp. 278-281, 2015. AbstractDOI

The influence of Ag nanoparticles (Ag NPs) on the luminescence of electrospun nonwoven mats made of polyvinylpyrrolidone (PVP) has been studied in this work. The PVP fibers incorporating 2.1–4.3 nm size Ag NPs show a significant photoluminescence (PL) band between 580 and 640 nm under 325 nm laser excitation. The down conversion luminescence emission is present even after several hours of laser excitation, which denotes the durability and stability of fibers to consecutive excitations. As so these one-dimensional photonic fibers made using cheap methods is of great importance for organic optoelectronic applications, fluorescent clothing or counterfeiting labels.

2014
Morawiec, S., M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Photocurrent enhancement in thin a-Si: H solar cells via plasmonic light trapping", CLEO: Science and Innovations: Optical Society of America, 8-13 Jun, 2014. Abstract

Photocurrent enhancement in thin a-Si:H solar cells due to the plasmonic light trapping is investigated, and correlated with the morphology and the optical properties of the self-assembled silver nanoparticles incorporated in the cells’ back reflector.