Biomolecular Engineering Lab

]

2010

]

2009/2010

]

2008/2009

Borlido, L, Azevedo AM, Roque ACA, Aires-Barros MR.  2011.  Potential of boronic acid functionalized magnetic particles in the adsorption of human antibodies under mammalian cell culture conditions. Journal of Chromatography A. 1218(43):7821-7827. AbstractWebsite

In this work, we systematically evaluated the potential of using boronic acid functionalized magnetic particles in the capturing of human immunoglobulin G under typical mammalian cell culture conditions. For comparison, Protein A coated magnetic particles were also used. The binding pH was found to significantly influence the adsorption isotherms of boronic acid particles with the higher capacities (0.216 g IgG/g support) being observed at pH 7.4. Comparatively, this value was 0.109 g IgG/g support, for Protein A particles under the same conditions. Both particles revealed very fast adsorption kinetics with more than 70% of the maximum binding capacity being achieved in a few seconds. The effect of glucose and lactate, which are known to interact with boronic acid, was evaluated. For glucose, the binding capacity was significantly influenced by the pH and decreased as pH increased. At pH 9.5, a 70% lower binding capacity was observed for glucose concentrations as low as 0.5 g/l. The effect of lactate was less pronounced and almost pH independent reaching at most 20% decrease in binding capacity. Nevertheless, the effect of both molecules was always lower at pH 7.4. The optimization of the elution conditions enabled complete recovery of bound IgG from boronic acid particles using 50mM Tris-HCl, 200 mM sorbitol, 200 mM NaCl at pH 8.5.

Open Positions - Master thesis & MSCA

Spontaneous Applications

We welcome applications for prospective Postdoctoral fellows, PhD students, Master students, Undergraduate students and Visiting Scholars.

Contacts

Address
Departamento de Química, Lab 523 / Room 526
Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa
Campus de Caparica

Alumni

Post Doc Researchers

2021

• Ana Sofia Pina, PhD

Awards

2021

 Flash Presentation Award, 40th International Symposium on the Separation of Protein, peptides and polynucleotides 2021

SMART RESPONSIVE PLATFORMS

In this research topic we focus on the integration of the affinity rea

Roque, ACA, Silva CSO, Taipa ÂM.  2007.  Affinity-based methodologies and ligands for antibody purification: Advances and perspectives. Journal of Chromatography A. 1160:44–55., Number 1-2 AbstractWebsite

Many successful, recent therapies for life-threatening diseases such as cancer and rheumatoid arthritis are based on the recognition between native or genetically engineered antibodies and cell-surface receptors. Although naturally produced by the immune system, the need for antibodies with unique specificities and designed for single application, has encouraged the search for novel antibody purification strategies. The availability of these products to the end-consumer is strictly related to manufacture costs, particularly those attributed to downstream processing. Over the last decades, academia and industry have developed different types of interactions and separation techniques for antibody purification, affinity-based strategies being the most common and efficient methodologies. The affinity ligands utilized range from biological to synthetic designed molecules with enhanced resistance and stability. Despite the successes achieved, the purification “paradigm” still moves interests and efforts in the continuous demand for improved separation performances. This review will focus on recent advances and perspectives in antibody purification by affinity interactions using different techniques, with particular emphasis on affinity chromatography.

Roque, ACA, Wilson OC.  2008.  Adsorption of gum Arabic on bioceramic nanoparticles. Materials Science & Engineering C.- Biomimetic and Supramolecular Systems. 28:443–447., Number 3 Abstract

n/a

Pina, AS, Roque ACA.  2009.  Studies on the molecular recognition between bioactive peptides and angiotensin-converting enzyme, apr. Journal of Molecular Recognition. 22:162–168., Number 2 AbstractWebsite

High blood pressure or hypertension is a condition affecting many individuals and represents a controllable risk factor for cardiovascular diseases such as coronary heart disease and stroke. A non-pharmacological approach to manage these includes the application of food components with antihypertensive activity. Milk protein-derived peptides have been exploited as natural hypotensive agents, namely the peptides {Val-Pro-Pro} {(VPP)} and {Ile-Pro-Pro} {(IPP)}, already commercialized in functional foods as a potential alternative to synthetic drugs. These bioactive peptides inhibit in vitro and in vivo the Angiotensin I-converting enzyme {(ACE)}, a protein with an important role in blood pressure regulation. In this work, we attempted to elucidate the possible mode of interaction between the peptides and {ACE}, including mechanisms of binding to the cofactor Zn2+, and further contrast this with the known mode of inhibition exerted by synthetic drugs {(Captopril}, Enalaprilat and Lisinopril). The bioactive peptide {Ala-Leu-Pro-Met-His-Ile-Arg} {(ALPMHIR)}, also known to inhibit the enzyme {ACE} but with a lower efficiency than {VPP} and {IPP}, was utilized in the docking studies for comparison. It was observed that the best docking poses obtained for {VPP} and {IPP} were located at the {ACE} catalytic site with very high resemblance to the drugs mode of interaction, including the coordination with Zn2+. As for {ALPMHIR}, the best docking poses were located in the narrow {ACE} channel outside the catalytic site, representing higher affinity energies and fewer resemblances with the interaction established by drugs.

Ferreira, IMPLVO, Eça R, Pinho O, Tavares P, Pereira A, Roque AC.  2007.  Development and Validation of an HPLC/UV Method for Quantification of Bioactive Peptides in Fermented Milks. Journal of Liquid Chromatography & Related Technologies. 30:2139–2147., Number 14 Abstract

The simultaneous separation and quantification of two casein peptides {(IPP}, {VPP)} presenting potent inhibitory activity of angiotensin-converting-enzyme {(ACE)} and casein in fermented milks was developed. Gradient elution was carried out at a flow-rate of 1 {mL/min}, using a mixture of two solvents. Solvent A was 0.1% {TFA} in water and solvent B was acetonitrile-water-trifluoracetic acid 95:5:0.1. The effluent was monitored by {UV} detector at 214 nm. Calibration curves were constructed in the interval of 0.01-1.0 {mg/mL} for {VPP}, 0.005-1.0 {mg/mL} for {IPP}, and 0.05-3.0 {mg/mL} for casein. R2 invariably exceeded 0.999. The detection limits were 0.004 for {VPP}, 0.002 {mg/mL} for {IPP}, and 0.02 {mg/mL} for casein. Repeatability of the method was evaluated by six consecutive injections of two standard solutions containing {VPP}, {IPP}, and casein. The {RSD} values for concentration were all below 5.08%. Recovery studies were carried out to determine the accuracy of the method. Recoveries ranged between 88 and 98.2%. The methodology was applied, not only, for the monitorization of {VPP}, {IPP}, and casein in commercial fermented milks labeled as presenting antihypertensive properties, but also, in milk with different degrees of fermentation by L. Helveticus, and in other commercial functional fermented milks, such as, those presenting cholesterol lowering properties.

Roque, ACA, Bispo S, Pinheiro ARN, Antunes JMA, Gonçalves D, Ferreira HA.  2009.  Antibody immobilization on magnetic particles. Journal of Molecular Recognition. 22:77–82., Number 2 AbstractWebsite

Magnetic particles {(MNPs)} offer attractive possibilities in biotechnology. {MNPs} can get close to a target biological entity, as their controllable sizes range from a few nanometres up to tens of nanometres, and their surface can be modified to add affinity and specificity towards desired molecules. Additionally, they can be manipulated by an external magnetic field gradient. In this work, the study of ferric oxide {(Fe3O4)} {MNPs} with different coating agents was conducted, particularly in terms of strategies for antibody attachment at the surfaces (covalent and physical adsorption) and the effects of blocking buffer composition and incubation times on the specific and non-specific interactions observed. The considered biological model system consisted of a coating antibody (goat {IgG)}, bovine serum albumin {(BSA)} as blocking agent, and a complementary antibody labelled with {FITC} (anti-goat {IgG).} The detection of antibody binding was followed by fluorescence microscopy and the intensity of the signals quantified. The ratio between the mean grey values of negative and positive controls, as well as the maximum intensity attainable in positive controls, were considered in the evaluation of the assays efficiency. The covalent immobilization of the coating antibody was more successful as opposed to protein adsorption. For covalent immobilization, silica-coated {MNPs}, a 5% (w/v) concentration of {BSA} in the blocking buffer and incubation times of 1 h produced the best results in terms of assay sensitivity. However, when conducting the assay for incubation periods of 10 min, the fluorescence signal was reduced by 44% but the assay specificity was maintained.

Roque, ACA, Bicho A, Batalha IL, Cardoso AS, Hussain A.  2009.  Biocompatible and bioactive gum Arabic coated iron oxide magnetic nanoparticles. Journal of Biotechnology. 144:313–320., Number 4 AbstractWebsite

The surface modification of iron oxide magnetic nanoparticles {(MNPs)} with gum Arabic {(GA)} via adsorption and covalent coupling was studied. The adsorption of {GA} was assessed during {MNP} chemical synthesis by the co-precipitation method {(MNP\_GA)}, and after {MNP} synthesis on both bare magnetite and {MNP\_GA.} The covalent immobilization of {GA} at the surface of aldehyde-activated {(MNP\_GAAPTES)} or aminated {MNPs} {(MNP\_GAEDC)} was achieved through free terminal amino and carboxylate groups from {GA.} The presence of {GA} at the surface of the {MNPs} was confirmed by {FTIR} and by the quantification of {GA} by the bicinchoninic acid test. Results indicated that the maximum of {GA} coating was obtained for the covalent coupling of {GA} through its free carboxylate groups {(MNP\_GAEDC)}, yielding a maximum of 1.8&\#xa0;g of {GA} bound/g of dried particles. The hydrodynamic diameter of {MNPs} modified with {GA} after synthesis resulted in the lowest values, in opposition to the {MNPs} co-precipitated with {GA} which presented the tendency to form larger aggregates of up to 1&\#xa0;μm. The zeta potentials indicate the existence of negatively charged surfaces before and after {GA} coating. The potential of the {GA} coated {MNPs} for further biomolecule attachment was assessed through anchorage of a model antibody to aldehyde-functionalized {MNP\_GA} and its subsequent detection with an {FITC} labeled anti-antibody.