Publications

Export 197 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K [L] M N O P Q R S T U V W X Y Z   [Show ALL]
R
Redox intermediates of Desulfovibrio gigas [NiFe] hydrogenase generated under hydrogen. Mossbauer and EPR characterization of the metal centers, Teixeira, M., Moura I., Xavier A. V., Moura J. J., Legall J., Dervartanian D. V., Peck, H. D. Jr., and Huynh B. H. , J Biol Chem, Oct 5, Volume 264, Number 28, p.16435-50, (1989) AbstractWebsite

The hydrogenase (EC 1.2.2.1) of Desulfovibrio gigas is a complex enzyme containing one nickel center, one [3Fe-4S] and two [4Fe-4S] clusters. Redox intermediates of this enzyme were generated under hydrogen (the natural substrate) using a redox-titration technique and were studied by EPR and Mossbauer spectroscopy. In the oxidized states, the two [4Fe-4S]2+ clusters exhibit a broad quadrupole doublet with parameters (apparent delta EQ = 1.10 mm/s and delta = 0.35 mm/s) typical for this type of cluster. Upon reduction, the two [4Fe-4S]1+ clusters are spectroscopically distinguishable, allowing the determination of their midpoint redox potentials. The cluster with higher midpoint potential (-290 +/- 20 mV) was labeled Fe-S center I and the other with lower potential (-340 +/- 20 mV), Fe-S center II. Both reduced clusters show atypical magnetic hyperfine coupling constants, suggesting structural differences from the clusters of bacterial ferredoxins. Also, an unusually broad EPR signal, labeled Fe-S signal B', extending from approximately 150 to approximately 450 mT was observed concomitantly with the reduction of the [4Fe-4S] clusters. The following two EPR signals observed at the weak-field region were tentatively attributed to the reduced [3Fe-4S] cluster: (i) a signal with crossover point at g approximately 12, labeled the g = 12 signal, and (ii) a broad signal at the very weak-field region (approximately 3 mT), labeled the Fe-S signal B. The midpoint redox potential associated with the appearance of the g = 12 signal was determined to be -70 +/- 10 mV. At potentials below -250 mV, the g = 12 signal began to decrease in intensity, and simultaneously, the Fe-S signal B appeared. The transformation of the g = 12 signal into the Fe-S signal B was found to parallel the reduction of the two [4Fe-4S] clusters indicating that the [3Fe-4S]o cluster is sensitive to the redox state of the [4Fe-4S] clusters. Detailed redox profiles for the previously reported Ni-signal C and the g = 2.21 signal were obtained in this study, and evidence was found to indicate that these two signals represent two different oxidation states of the enzyme. Finally, the mechanistic implications of our results are discussed.

Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): insights into isoniazid activation, Wengenack, N. L., Lopes H., Kennedy M. J., Tavares P., Pereira A. S., Moura I., Moura J. J., and Rusnak F. , Biochemistry, Sep 19, Volume 39, Number 37, p.11508-13, (2000) AbstractWebsite

Mycobacterium tuberculosis KatG is a multifunctional heme enzyme responsible for activation of the antibiotic isoniazid. A KatG(S315T) point mutation is found in >50% of isoniazid-resistant clinical isolates. Since isoniazid activation is thought to involve an oxidation reaction, the redox potential of KatG was determined using cyclic voltammetry, square wave voltammetry, and spectroelectrochemical titrations. Isoniazid activation may proceed via a cytochrome P450-like mechanism. Therefore, the possibility that substrate binding by KatG leads to an increase in the heme redox potential and the possibility that KatG(S315T) confers isoniazid resistance by altering the redox potential were examined. Effects of the heme spin state on the reduction potentials of KatG and KatG(S315T) were also determined. Assessment of the Fe(3+)/Fe(2+) couple gave a midpoint potential of ca. -50 mV for both KatG and KatG(S315T). In contrast to cytochrome P450s, addition of substrate had no significant effect on either the KatG or KatG(S315T) redox potential. Conversion of the heme to a low-spin configuration resulted in a -150 to -200 mV shift of the KatG and KatG(S315T) redox potentials. These results suggest that isoniazid resistance conferred by KatG(S315T) is not mediated through changes in the heme redox potential. The redox potentials of isoniazid were also determined using cyclic and square wave voltammetry, and the results provide evidence that the ferric KatG and KatG(S315T) midpoint potentials are too low to promote isoniazid oxidation without formation of a high-valent enzyme intermediate such as compounds I and II or oxyferrous KatG.

Redox properties and activity studies on a nickel-containing hydrogenase isolated from a halophilic sulfate reducer Desulfovibrio salexigens, Teixeira, M., Moura I., Fauque G., Czechowski M., Berlier Y., Lespinat P. A., Legall J., Xavier A. V., and Moura J. J. , Biochimie, Jan, Volume 68, Number 1, p.75-84, (1986) AbstractWebsite

A soluble hydrogenase from the halophilic sulfate reducing bacterium Desulfovibrio salexigens, strain British Guiana (NCIB 8403) has been purified to apparent homogeneity with a final specific activity of 760 mumoles H2 evolved/min/mg (an overall 180-fold purification with 20% recovery yield). The enzyme is composed of two non-identical subunits of molecular masses 62 and 36 kDa, respectively, and contains approximately 1 Ni, 12-15 Fe and 1 Se atoms/mole. The hydrogenase shows a visible absorption spectrum typical of an iron-sulfur containing protein (A400/A280 = 0.275) and a molar absorbance of 54 mM-1cm-1 at 400 nm. In the native state (as isolated, under aerobic conditions), the enzyme is almost EPR silent at 100 K and below. However, upon reduction under H2 atmosphere a rhombic EPR signal develops at g-values 2.22, 2.16 and around 2.0, which is optimally detected at 40 K. This EPR signal is reminiscent of the nickel signal C (g-values 2.19, 2.16 and 2.02) observed in intermediate redox states of the well characterized D. gigas nickel containing hydrogenase and assigned to nickel by 61 Ni isotopic substitution (J.J.G. Moura, M. Teixeira, I. Moura, A.V. Xavier and J. Le Gall (1984), J. Mol. Cat., 23, 305-314). Upon longer incubation with H2 the "2.22" EPR signal decreases. During the course of a redox titration under H2, this EPR signal attains a maximal intensity around--380 mV. At redox states where this "2.22" signal develops (or at lower redox potentials), low temperature studies (below 10 K) reveals the presence of other EPR species with g-values at 2.23, 2.21, 2.14 with broad components at higher fields. This new signal (fast relaxing) exhibits a different microwave power dependence from that of the "2.22" signal, which readily saturates with microwave power (slow relaxing). Also at low temperature (8 K) typical reduced iron-sulfur EPR signals are concomitantly observed with gmed approximately 1.94. The catalytic properties of the enzyme were also followed by substrate isotopic exchange D2/H+ and H2 production measurements.

Redox properties of Desulfovibrio gigas [Fe3S4] and [Fe4S4] ferredoxins and heterometal cubane-type clusters formed within the [Fe3S4] core. Square wave voltammetric studies, Moreno, C., Macedo A. L., Moura I., Legall J., and Moura J. J. , J Inorg Biochem, Feb 15, Volume 53, Number 3, p.219-34, (1994) AbstractWebsite

The same polypeptide chain (58 amino acids, 6 cysteines) is used to build up two ferredoxins in Desulfovibrio gigas a sulfate reducing organism. Ferredoxin II (FdII) contains a single [Fe3S4] core and ferredoxin I (FdI) mainly a [Fe4S4] core. The [Fe3S4] core can readily be interconverted into a [Fe4S4] complex (J.J.G. Moura, I. Moura, T.A. Kent, J.D. Lipscomb, B.H. Huynh, J. LeGall, A.V. Xavier, and E. Munck, J. Biol. Chem. 257, 6259 (1982)). This interconversion process suggested that the [Fe3S4] core could be used as a synthetic precursor for the formation of heterometal clusters. Co, Zn, Cd, and Ni derivatives were produced (I. Moura, J.J.G. Moura, E. Munck, V. Papaephthymiou, and J. LeGall, J. Am. Chem. Soc. 108, 349 (1986), K. Sureurs, E. Munck, I. Moura, J.J.G. Moura, and J. LeGall, J. Am. Chem. Soc. 109, 3805 (1986), and A.L. Macedo, I. Moura, J.J.G. Moura, K. Surerus, and E. Munck, unpublished results). The redox properties of a series of heterometal clusters (MFe3S4] are assessed using direct electrochemistry (square wave voltammetry--SWV) promoted by Mg(II) at a glassy carbon electrode (derivatives: Cd (-495 mV), Fe (-420 mV), Ni (-360 mV), and Co (-245 mV) vs normal hydrogen electrode (NHE)). In parallel, the electrochemical behavior (cyclic voltammetry--CV, differential pulse voltammetry--DPV and SWV) of FdI and FdII were investigated as well as the cluster interconversion process. In addition to the +1/0 (3Fe cluster) and +2/+1 (4Fe cluster) redox transitions, a very negative redox step, at -690 mV, was detected for the 3Fe core, reminiscent of a postulated further 2e- reduction step, as proposed for D. africanus ferredoxin III by F.A. Armstrong, S.J. George, R. Cammack, E.C. Hatchikian, and A.J. Thomson, Biochem. J. 264, 265 (1989). The electrochemical redox potential values are compared with those determined by independent methods (namely by electron paramagnetic resonance (EPR) and visible spectroscopy).

Redox studies on rubredoxins from sulphate and sulphur reducing bacteria, Moura, I., Moura J. J., Santos M. H., Xavier A. V., and Legall J. , FEBS Lett, Nov 15, Volume 107, Number 2, p.419-21, (1979) AbstractWebsite
n/a
Regulation of the hexaheme nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli. A mass spectrometric study, Costa, C., Macedo A., Moura I., Moura J. J., Legall J., Berlier Y., Liu M. Y., and Payne W. J. , FEBS Lett, Dec 10, Volume 276, Number 1-2, p.67-70, (1990) AbstractWebsite

Dissimilatory nitrite reduction, carried out by hexaheme proteins, gives ammonia as the final product. Representatives of this enzyme group from 3 bacterial species can also reduce NO to either ammonia or N2O. The redox regulation of the nitrite/nitric oxide activities is discussed in the context of the denitrifying pathway.

Replacement of Methionine as the Axial Ligand of Achromobacter cycloclastes Cytochrome C554 at High pH Values Revealed by Absorption, EPR and MCD Spectroscopy, Saraiva, L. M., Thomson A. J., Lebrun N. E., Liu M. Y., Payne W. J., Legall J., and Moura I. , Biochemical and Biophysical Research Communications, Volume 204, Number 1, p.120-128, (1994) AbstractWebsite
n/a
Resonance Raman spectra of rubredoxin: new assignments and vibrational coupling mechanism from iron-54/iron-56 isotope shifts and variable-wavelength excitation, Czernuszewicz, Roman S., Legall Jean, Moura Isabel, and Spiro Thomas G. , Inorganic Chemistry, 1986/02/01, Volume 25, Number 5, p.696-700, (1986) AbstractWebsite
n/a
Resonance Raman spectra of three-iron centers in ferredoxins from Desulfovibrio gigas, Johnson, M. K., Hare J. W., Spiro T. G., Moura J. J., Xavier A. V., and Legall J. , J Biol Chem, Oct 10, Volume 256, Number 19, p.9806-8, (1981) AbstractWebsite

The resonance Raman spectra of ferredoxins (Fd) I and II from Desulfovibrio gigas are reported using 4579 A Ar+ laser excitation. The (3Fe-3S) center in Fd II has a characteristic resonance Raman spectrum, readily distinguishable from those of (2Fe-2S) or (4Fe-4S) clusters. Reduction of Fd II produces a marked alteration in the resonance Raman spectrum. Fd I is shown to contain both (3Fe-3S) and (4Fe-4S) Fd-type clusters. The results illustrate the potential of resonance Raman spectroscopy in Fe-S cluster identification, even in cases where more than one cluster type is present.

Resonance Raman studies of nickel tetrathiolates and nickel-substituted rubredoxins and desulforedoxin, Huang, Yun Hua, Moura Isabel, Moura Jose J. G., Legall Jean, Park Jae Bum, Adams Michael W. W., and Johnson Michael K. , Inorganic Chemistry, 1993/02/01, Volume 32, Number 4, p.406-412, (1993) AbstractWebsite
n/a
Resonance Raman study on the iron-sulfur centers of Desulfovibrio gigas aldehyde oxidoreductase, Zhelyaskov, V., Yue K. T., Legall J., Barata B. A., and Moura J. J. , Biochim Biophys Acta, Oct 25, Volume 1252, Number 2, p.300-4, (1995) AbstractWebsite

Resonance Raman spectra of the molybdenum containing aldehyde oxidoreductase from Desulfovibrio gigas were recorded at liquid nitrogen temperature with various excitation wavelengths. The spectra indicate that all the iron atoms are organised in [2Fe-2S] type centers consistent with cysteine ligations. No vibrational modes involving molybdenum could be clearly identified. The features between 280 and 420 cm-1 are similar but different from those of typical plant ferredoxin-like [2Fe-2S] cluster. The data are consistent with the presence of a plant ferredoxin-like cluster (center I) and a unique [2Fe-2S] cluster (center II), as suggested by other spectroscopic studies. The Raman features of center II are different from those of other [2Fe-2S] clusters in proteins. In addition, a strong peak at ca. 683 cm-1, which is not present in other [2Fe-2S] clusters in proteins, was observed with purple excitation (406.7-413.1 nm). The peak is assigned to enhanced cysteinyl C-S stretching in center II, suggesting a novel geometry for this center.

Role of vitamin B12 in methyl transfer for methane biosynthesis by Methanosarcina barkeri, Wood, J. M., Moura I., Moura J. J., Santos M. H., Xavier A. V., Legall J., and Scandellari M. , Science, Apr 16, Volume 216, Number 4543, p.303-5, (1982) AbstractWebsite

When Methanosarcina barkeri is grown on methanol as the sole carbon source, a B12-containing protein is synthesized by this organism. This B12 protein contains bound aquocobalamin, and when this cofactor is reduced and methylated with [14C]methyl iodide, the resultant [14C]methyl B12 protein is extremely active in the biosynthesis of 14C-labeled methane. These findings indicate that a B12-dependent system is operative in the biological formation of methane in addition to other systems that are B12-independent.

S
Sample treatment for protein identification by mass spectrometry-based techniques, Lopez-Ferrer, D., Canas B., Vazquez J., Lodeiro C., Rial-Otero R., Moura I., and Capelo J. L. , Trac-Trends in Analytical Chemistry, Nov, Volume 25, Number 10, p.996-1005, (2006) AbstractWebsite

Rapid identification of proteins is of primary importance for the analytical community. Protein-biomarker discovery for medical diagnostics or pharmacological purposes is becoming one of the hottest research topics. Moreover, rapid identification of proteins can help unambiguous bacterial and virus detection. In addition, the fast identification of bacteria can be used to beat bioterrorism. As a consequence, new analytical methodologies have emerged recently with the aim of making protein analysis as fast and as confident as possible. In this article, we critically review the new trends in sample treatment for protein identification and comment on the prospects for the future in this promising analytical area. (c) 2006 Elsevier Ltd. All rights reserved.

Sandwich-Type Enzymatic Fuel Cell Based on a New Electro-Conductive Material - Ion Jelly, Carvalho, R., Almeida R., Moura J. J. G., Lourenço N., Fonseca L., and Cordas C. M. , Chemistry Select, Volume 1, p.6546–6552, (2016) Website
Simulation of the electrochemical behavior of multi-redox systems. Current potential studies on multiheme cytochromes, Moreno, C., Campos A., Teixeira M., Legall J., Montenegro M. I., Moura I., Van Dijk C., and Moura J. G. , Eur J Biochem, Dec 5, Volume 202, Number 2, p.385-93, (1991) AbstractWebsite

The direct unmediated electrochemical response of the tetrahemic cytochrome c3 isolated from sulfate reducers Desulfovibrio baculatus (DSM 1743) and D. vulgaris (strain Hildenborough), was evaluated using different electrode systems [graphite (edge cut), gold, semiconductor (InO2) and mercury)] and different electrochemical methods (cyclic voltammetry and differential pulse voltammetry). A computer program was developed for the theoretical simulation of a complete cyclic voltammetry curve, based on the method proposed by Nicholson and Shain [Nicholson, R.S. & Shain, I. (1964) Anal. Chem. 36, 706-723], using the Gauss-Legendre method for calculation of the integral equations. The experimental data obtained for this multi-redox center protein was deconvoluted in to the four redox components using theoretically generated cyclic voltammetry curves and the four mid-point reduction potentials determined. The pH dependence of the four reduction potentials was evaluated using the deconvolution method described.

Small phospho-donors phosphorylate MorR without inducing protein conformational changes, Castro, N. S. S., Laia C. A. T., Maiti B. K., Cerqueira N., Moura I., and Carepo M. S. P. , Biophys Chem, Volume 240, p.25-33, (2018)
The solution structure of desulforedoxin, a simple iron-sulfur protein - An NMR study of the zinc derivative, Goodfellow, B. J., Tavares P., Romao M. J., Czaja C., Rusnak F., Legall J., Moura I., and Moura J. J. G. , Journal of Biological Inorganic Chemistry, Aug, Volume 1, Number 4, p.341-354, (1996) AbstractWebsite

Desulforedoxin is a simple dimeric protein isolated from Desulfovibrio gigas containing a distorted rubredoxin-like center with one iron coordinated by four cysteinyl residues (7.9 kDa with a 36-amino-acid monomer). H-1 NMR spectra of the oxidized Dx(Fe3+) and reduced Dx(Fe2+) forms were analyzed. The spectra show substantial line broadening due to the paramagnetism of iron. However, very low-field-shifted resonances, assigned to H beta protons, were observed in the reduced state and their temperature dependence analyzed. The active site of Dx was reconstituted with zinc, and its solution structure was determined using 2D NMR methods. This diamagnetic form gave high-resolution NMR data enabling the identification of all the amino acid spin systems. Sequential assignment and the determination of secondary structural elements was attempted using 2D NOESY experiments. However, because of the symmetrical dimer nature of the protein standard, NMR sequential assignment methods could not resolve all cross peaks due to inter- and intra-chain effects. The X-ray structure enabled the spatial relationship between the monomers to be obtained, and resolved the assignment problems. Secondary structural features could be identified from the NMR data; an antiparallel beta-sheet running from D5 to V18 with a well-defined beta-turn around cysteines C9 and C12. The section G22 to T25 is poorly defined by the NMR data and is followed by a turn around V27-C29. The C-terminus ends up near residues V6 and Y7. Distance geometry (DG) calculations allowed families of structures to be generated from the NMR data. A family of structures with a low target function violation for the Dr monomer and dimer were found to have secondary structural elements identical to those seen in the X-ray structure. The amide protons for G4, D5, G13, L11 NH and Q14 NH epsilon amide protons, H-bonded in the X-ray structure, were not seen by NMR as slowly exchanging, while structural disorder at the N-terminus, for the backbone at E10 and for the section G22-T25, was observed. Comparison between the Fe and Zn forms of Dr suggests that metal substitution does not have an effect on the structure of the protein.

Spectroscopic characterization of a high-potential monohaem cytochrome from Wolinella succinogenes, a nitrate-respiring organism. Redox and spin equilibria studies, Moura, I., Liu M. Y., Costa C., Liu M. C., Pai G., Xavier A. V., Legall J., Payne W. J., and Moura J. J. , Eur J Biochem, Nov 15, Volume 177, Number 3, p.673-82, (1988) AbstractWebsite

When purified, a high-potential c-type monohaem cytochrome from the nitrate-respiring organism, Wollinella succinogenes (VPI 10659), displayed a minimum molecular mass of 8.2 kDa and 0.9 mol iron and 0.95 mol haem groups/mol protein. Visible light spectroscopy suggested the presence of an equilibrium between two ligand arrangements around the haem, i.e. an absorption band at 695 nm characteristic of haem-methionine coordination (low-spin form) coexisting with a high-spin form revealed by a band at 619 nm and a shoulder at 498 nm. The mid-point redox potential measured by visible redox titration of the low-spin form was approximately +100 mV. Binding cyanide (Ka = 5 x 10(5) M-1) resulted in the displacement of the methionyl axial residue, and full conversion to a low-spin, cyanide-bound form. Structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized state, the pH dependence of the haem methyl resonances (pH range 5-10) and the magnetic susceptibility measurements (using an NMR method) were consistent with the visible light spectroscopic data for the presence of a high-spin/low-spin equilibrium with a transition pKa of 7.3. The spin equilibrium was fast on the NMR time scale. The haem methyl resonances presented large downfield chemical shifts. An unusually broad methyl resonance at around 35 ppm (pH = 7.5, 25 degrees C) was extremely temperature-dependent [delta(323 K) - delta(273 K) = 7.2 ppm] and was assigned to the S-CH3 group of the axial methionine. In the ferrous state only a low-spin form is present. The haem meso protons, the methyl group and the methylene protons from the axial methionine were identified in the reduced form. The resonances from the aromatic residues (three tyrosines and one phenylalanine) were also assigned. Detailed monitoring of the NMR-redox pattern of the monohaem cytochrome from the fully reduced up to the fully oxidized state revealed that the rate of the intermolecular electronic exchange process was approximately 6 x 10(6) M-1 s-1 at 303 K and pH = 6.31. A dihaem cytochrome also present in the crude cell extract and purified to a homogeneous state, exhibited a molecular mass of 11 kDa and contained 2.43 mol iron and 1.89 mol haem c moieties/mol cytochrome. The absorption spectrum in the visible region exhibited no band at 695 nm, suggesting that methione is not a ligand for either of the two haems. Recovery of only small amounts of this protein prevented more detailed structural analyzes.

Spectroscopic properties of desulfoferrodoxin from Desulfovibrio desulfuricans (ATCC 27774), Tavares, P., Ravi N., Moura J. J., Legall J., Huang Y. H., Crouse B. R., Johnson M. K., Huynh B. H., and Moura I. , J Biol Chem, Apr 8, Volume 269, Number 14, p.10504-10, (1994) AbstractWebsite

Desulfoferrodoxin, a non-heme iron protein, was purified previously from extracts of Desulfovibrio desulfuricans (ATCC 27774) (Moura, I., Tavares, P., Moura, J. J. G., Ravi, N., Huynh, B. H., Liu, M.-Y., and LeGall, J. (1990) J. Biol. Chem. 265, 21596-21602). The as-isolated protein displays a pink color (pink form) and contains two mononuclear iron sites in different oxidation states: a ferric site (center I) with a distorted tetrahedral sulfur coordination similar to that found in desulforedoxin from Desulfovibrio gigas and a ferrous site (center II) octahedrally coordinated with predominantly nitrogen/oxygen-containing ligands. A new form of desulfoferrodoxin which displays a gray color (gray form) has now been purified. Optical, electron paramagnetic resonance (EPR), and Mossbauer data of the gray desulfoferrodoxin indicate that both iron centers are in the high-spin ferric states. In addition to the EPR signals originating from center I at g = 7.7, 5.7, 4.1, and 1.8, the gray form of desulfoferrodoxin exhibits a signal at g = 4.3 and a shoulder at g = 9.6, indicating a high-spin ferric state with E/D approximately 1/3 for the oxidized center II. Redox titrations of the gray form of the protein monitored by optical spectroscopy indicate midpoint potentials of +4 +/- 10 and +240 +/- 10 mV for centers I and II, respectively. Mossbauer spectra of the gray form of the protein are consistent with the EPR finding that both centers are high-spin ferric and can be analyzed in terms of the EPR-determined spin Hamiltonian parameters. The Mossbauer parameters for both the ferric and ferrous forms of center II are indicative of a mononuclear high spin iron site with octahedral coordination and predominantly nitrogen/oxygen-containing ligands. Resonance Raman studies confirm the structural similarity of center I and the distorted tetrahedral FeS4 center in desulforedoxin and provide evidence for one or two cysteinyl-S ligands for center II. On the basis of the resonance Raman results, the 635 nm absorption band that is responsible for the gray color of the oxidized protein is assigned to a cysteinyl-S-->Fe(III) charge transfer transition localized on center II. The novel properties and possible function of center II are discussed in relation to those of mononuclear iron centers in other enzymes.

Spectroscopic studies of cobalt and nickel substituted rubredoxin and desulforedoxin, Moura, I., Teixeira M., Legall J., and Moura J. J. , J Inorg Biochem, Nov, Volume 44, Number 2, p.127-39, (1991) AbstractWebsite

The single iron site of rubredoxin was replaced by nickel and cobalt. The near-infrared/visible/UV spectra of these metal derivatives show ligand-field transitions and charge-transfer bands which closely resemble those of simple tetrathiolate complexes, indicating a tetrahedral arrangement of the sulfur cysteinyl ligands around the metal core. The 1H NMR spectra of the nickel and cobalt derivatives reveal extremely low-field contact shifted resonances of one proton intensity assigned to beta-CH2 and alpha-CH cysteinyl protons. Other well resolved resonances shifted out of the main protein spectral envelope are also observed and probably arise from contact plus pseudocontact shift mechanisms. Rubredoxins from different sulfate reducers were metal substituted and assignments of aliphatic protons are tentatively proposed, taking advantage of the amino acid sequence homologies. The present data is promising in terms of structural analysis of the coordination sphere of the metal core. It was also shown that replacement of the iron atom of desulforedoxin, a close analogue of rubredoxin, by cobalt and nickel was possible.

Spectroscopic studies of the oxidation-reduction properties of three forms of ferredoxin from Desulphovibrio gigas, Cammack, R., Rao K. K., Hall D. O., Moura J. J., Xavier A. V., Bruschi M., Legall J., Deville A., and Gayda J. P. , Biochim Biophys Acta, Feb 22, Volume 490, Number 2, p.311-21, (1977) AbstractWebsite

Electron paramagnetic resonance spectra were recorded of three forms of Desulphovibrio gigas ferredoxin, FdI, FdI' and FdII. The g = 1.94 signal seen in dithionite-reduced samples is strong in FdI, weaker in FdI' and very small in FdII. The g = 2.02 signal in the oxidized proteins is weak in FdI and strongest in FdII. It is concluded that most of the 4Fe-4S centres in FdI change between states C- and C2-; FdI' contain both types of centre. There is no evidence that any particular centre can change reversibly between all three oxidation states. Circular dichroism spectra show differences between FdI and FdII even in the diamagnetic C2- state. The redox potentials of the iron-sulphur centres of the three oligomers (forms) are different. After formation of the apo-protein of FdII and reconstitution with iron and sulphide, the protein behaves more like FdI, showing a strong g = 1.94 signal in the reduced states.

Spectroscopic studies on APS reductase isolated from the hyperthermophilic sulfate-reducing archaebacterium Archaeglobus fulgidus, Lampreia, J., Fauque G., Speich N., Dahl C., Moura I., Truper H. G., and Moura J. J. , Biochem Biophys Res Commun, Nov 27, Volume 181, Number 1, p.342-7, (1991) AbstractWebsite

Adenylyl sulfate (APS) reductase, the key enzyme of the dissimilatory sulfate respiration, catalyzes the reduction of APS (the activated form of sulfate) to sulfite with release of AMP. A spectroscopic study was carried out with the APS reductase purified from the extremely thermophilic sulfate-reducing archaebacterium Archaeoglobus fulgidus DSM 4304. Combined ultraviolet/visible spectroscopy and low temperature electron paramagnetic resonance (EPR) studies were used in order to characterize the active centers and the reactivity towards AMP and sulfite of this enzyme. The A. fulgidus APS reductase is an iron-sulfur flavoprotein containing two distinct [4Fe-4S] clusters (Centers I and II) very similar to the homologous enzyme from Desulfovibrio gigas. Center I, which has a high redox potential, is reduced by AMP and sulfite, and Center II has a very negative redox potential.

Spin-equilibrium and heme-ligand alteration in a high-potential monoheme cytochrome (cytochrome c554) from Achromobacter cycloclastes, a denitrifying organism, Saraiva, L. M., Liu M. Y., Payne W. J., Legall J., Moura J. J., and Moura I. , Eur J Biochem, Apr 30, Volume 189, Number 2, p.333-41, (1990) AbstractWebsite

A c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.

Structural and functional approach toward a classification of the complex cytochrome c system found in sulfate-reducing bacteria, Moura, J. J., Costa C., Liu M. Y., Moura I., and Legall J. , Biochim Biophys Acta, May 23, Volume 1058, Number 1, p.61-6, (1991) AbstractWebsite

Following the discovery of the tetraheme cytochrome c3 in the strict anaerobic sulfate-reducing bacteria (Postgate, J.R. (1954) Biochem. J. 59, xi; Ishimoto et al. (1954) Bull. Chem. Soc. Japan 27, 564-565), a variety of c-type cytochromes (and others) have been reported, indicating that the array of heme proteins in these bacteria is complex. We are proposing here a tentative classification of sulfate- (and sulfur-) reducing bacteria cytochromes c based on: number of hemes per monomer, heme axial ligation, heme spin state and primary structures (whole or fragmentary). Different and complementary spectroscopic tools have been used to reveal the structural features of the heme sites.

Structural control of the redox potentials and of the physiological activity by oligomerization of ferredoxin, Moura, J. J., Xavier A. V., Hatchikian E. C., and Legall J. , FEBS Lett, May 1, Volume 89, Number 1, p.177-9, (1978) AbstractWebsite
n/a