Publications

Export 207 results:
Sort by: Author [ Title  (Asc)] Type Year
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
V
Santos, MFA, Correia I, Oliveira AR, Garribba E, Pessoa JC, Santos-Silva T.  2014.  Vanadium Complexes as Prospective Therapeutics: Structural Characterization of a VIV Lysozyme Adduct. European Journal of Inorganic Chemistry. :n/a–n/a.: WILEY-VCH Verlag AbstractWebsite

The biological activity of vanadium complexes, namely, as insulin enhancers, is well known. We report a combined X-ray crystallography, electron paramagnetic resonance, and density functional theory study of the interaction of vanadium picolinate complexes with hen egg white lysozyme (HEWL). We show that the VIVO(pic)2 complex covalently binds to the COO– group of the side chain of Asp52 of HEWL. The long VIV=O bond obtained in the X-ray study is explained to be due to reduction of VIV to VIII during exposure of the crystals to the intense X-ray beam.

Santos, MFA, Oliveira AR, Somnath R, Romao MJ, Pessoa JC, Santos-Silva T.  2013.  Vanadium compounds as prospective therapeutics: X-ray structure of protein adducts. European Biophysics Journal with Biophysics Letters. 42:S181-S181. AbstractWebsite
n/a
W
Oliveira, AR, Mota C, Romão MJ, Pereira IAC.  2022.  The W/SeCys-FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough, 2022/06/10. Encyclopedia of Inorganic and Bioinorganic Chemistry. :1-12. Abstract

Abstract The W/SeCys-FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a dimeric periplasmic enzyme that catalyzes the reversible oxidation of formate and reduction of CO2. It belongs to the group of metal-dependent FDHs, with a tungsten at the active site coordinated by two pyranopterin guanine dinucleotides, a selenocysteine, and one labile sulfur atom. FdhAB has a remarkably high activity and unusual tolerance to oxygen, making it an ideal model system to study biological CO2 reduction.

X
Boer, DR, Thapper A, Brondino CD, Romao MJ, Moura JJG.  2004.  X-ray crystal structure and EPR spectra of "arsenite-inhibited" Desulfovibrio gigas aldehyde dehydrogenase: A member of the xanthine oxidase family. Journal of the American Chemical Society. 126:8614-8615., Number 28 AbstractWebsite
n/a
Najmudin, S, Guerreiro C, Carvalho AL, Prates JAM, Correia MAS, Alves VD, Ferreira LMA, Romao MJ, Gilbert HJ, Bolam DN, Fontes C.  2006.  Xyloglucan is recognized by carbohydrate-binding modules that interact with beta-glucan chains. Journal of Biological Chemistry. 281:8815-8828., Number 13 AbstractWebsite
n/a
{
Carvalho, AL, Santos-Silva T, Romão MJ, Eurico J, Marcelo F.  2018.  {CHAPTER 2 Structural Elucidation of Macromolecules}, sep. Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications with the Protocols. :30–91.: BENTHAM SCIENCE PUBLISHERS AbstractWebsite
n/a
Correia, MAS, Otrelo-Cardoso AR, Schwuchow V, {Sigfridsson Clauss} KGV, Haumann M, Romão MJ, Leimkühler S, Santos-Silva T.  2016.  {The Escherichia coli Periplasmic Aldehyde Oxidoreductase Is an Exceptional Member of the Xanthine Oxidase Family of Molybdoenzymes}, oct. ACS Chemical Biology. 11:2923–2935., Number 10 AbstractWebsite

The xanthine oxidase (XO) family comprises molybdenum-dependent enzymes that usually form homodimers (or dimers of heterodimers/trimers) organized in three domains that harbor two [2Fe-2S] clusters, one FAD, and a Mo cofactor. In this work, we crystallized an unusual member of the family, the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli. This is the first example of an E. coli protein containing a molybdopterin-cytosine-dinucleotide cofactor and is the only heterotrimer of the XO family so far structurally characterized. The crystal structure revealed the presence of an unexpected [4Fe-4S] cluster, anchored to an additional 40 residues subdomain. According to phylogenetic analysis, proteins containing this cluster are widely spread in many bacteria phyla, putatively through repeated gene transfer events. The active site of PaoABC is highly exposed to the surface with no aromatic residues and an arginine (PaoC-R440) making a direct interaction with PaoC-E692, which acts as a base catalyst. In order to understand the importance of R440, kinetic assays were carried out, and the crystal structure of the PaoC-R440H variant was also determined.