Publications

Export 207 results:
Sort by: Author Title [ Type  (Desc)] Year
Journal Article
Boer, DR, Muller A, Fetzner S, Lowe DJ, Romao MJ.  2005.  On the purification and preliminary crystallographic analysis of isoquinoline 1-oxidoreductase from Brevundimonas diminuta 7. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 61:137-140. AbstractWebsite
n/a
Foti, A, Hartmann T, Coelho C, Santos-Silva T, Romão MJ, Leimkühler S.  2016.  Optimization of the Expression of Human Aldehyde Oxidase for Investigations of Single-Nucleotide Polymorphisms. Drug Metabolism and Disposition. 44:1277–1285., Number 8: American Society for Pharmacology and Experimental Therapeutics AbstractWebsite

Aldehyde oxidase (AOX1) is an enzyme with broad substrate specificity, catalyzing the oxidation of a wide range of endogenous and exogenous aldehydes as well as N-heterocyclic aromatic compounds. In humans, the enzyme’s role in phase I drug metabolism has been established and its importance is now emerging. However, the true physiologic function of AOX1 in mammals is still unknown. Further, numerous single-nucleotide polymorphisms (SNPs) have been identified in human AOX1. SNPs are a major source of interindividual variability in the human population, and SNP-based amino acid exchanges in AOX1 reportedly modulate the catalytic function of the enzyme in either a positive or negative fashion. For the reliable analysis of the effect of amino acid exchanges in human proteins, the existence of reproducible expression systems for the production of active protein in ample amounts for kinetic, spectroscopic, and crystallographic studies is required. In our study we report an optimized expression system for hAOX1 in Escherichia coli using a codon-optimized construct. The codon-optimization resulted in an up to 15-fold increase of protein production and a simplified purification procedure. The optimized expression system was used to study three SNPs that result in amino acid changes C44W, G1269R, and S1271L. In addition, the crystal structure of the S1271L SNP was solved. We demonstrate that the recombinant enzyme can be used for future studies to exploit the role of AOX in drug metabolism, and for the identification and synthesis of new drugs targeting AOX when combined with crystallographic and modeling studies.

Verma, AK, Goyal A, Freire F, Bule P, Venditto I, Bras JLA, Santos H, Cardoso V, Bonifacio C, Thompson A, Romao MJ, Prates JAM, Ferreira LMA, Fontes CMGA, Najmudin S.  2013.  Overexpression, crystallization and preliminary X-ray crystallographic analysis of glucuronoxylan xylanohydrolase (Xyn30A) from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 69:1440-1442. AbstractWebsite
n/a
Luis, AS, Alves VD, Romao MJ, Prates JAM, Fontes CMGA, Najmudin S.  2011.  Overproduction, purification, crystallization and preliminary X-ray characterization of a novel carbohydrate-binding module of endoglucanase Cel5A from Eubacterium cellulosolvens. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 67:491-493. AbstractWebsite
n/a
Najmudin, S, Gonzalez PJ, Trincao J, Coelho C, Mukhopadhyay A, Cerqueira NMFSA, Romao CC, Moura I, Moura JJG, Brondino CD, Romao MJ.  2008.  Periplasmic nitrate reductase revisited: a sulfur atom completes the sixth coordination of the catalytic molybdenum. Journal of Biological Inorganic Chemistry. 13:737-753., Number 5 AbstractWebsite
n/a
Voityuk, AA, Albert K, Kostlmeier S, Nasluzov VA, Neyman KM, Hof P, Huber R, Romao MJ, Rosch N.  1997.  Prediction of alternative structures of the molybdenum site in the xanthine oxidase-related aldehyde oxide reductase. Journal of the American Chemical Society. 119:3159-3160., Number 13 AbstractWebsite
n/a
Romao, MJ, Carvalho AL, Dias JM, Teixeira S, Bourenkov G, Bartunik H, Huber R, Maia L, Mira L.  1999.  Preliminary crystallographic studies of xanthine oxidase purified from rat liver. Journal of Inorganic Biochemistry. 74:281-281., Number 1-4 AbstractWebsite
n/a
Freire, F, Romao MJ, Macedo AL, Aveiro SS, Goodfellow BJ, Carvalho AL.  2009.  Preliminary structural characterization of human SOUL, a haem-binding protein. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 65:723-726. AbstractWebsite
n/a
Polino, M, Rho HS, Pina MP, Mallada R, Carvalho AL, Romão MJ, Coelhoso I, Gardeniers JGE, Crespo JG, Portugal CAM.  2021.  Protein Crystallization in a Microfluidic Contactor with Nafion®117 Membranes. Membranes. 11, Number 8 AbstractWebsite

Protein crystallization still remains mostly an empirical science, as the production of crystals with the required quality for X-ray analysis is dependent on the intensive screening of the best protein crystallization and crystal’s derivatization conditions. Herein, this demanding step was addressed by the development of a high-throughput and low-budget microfluidic platform consisting of an ion exchange membrane (117 Nafion® membrane) sandwiched between a channel layer (stripping phase compartment) and a wells layer (feed phase compartment) forming 75 independent micro-contactors. This microfluidic device allows for a simultaneous and independent screening of multiple protein crystallization and crystal derivatization conditions, using Hen Egg White Lysozyme (HEWL) as the model protein and Hg2+ as the derivatizing agent. This microdevice offers well-regulated crystallization and subsequent crystal derivatization processes based on the controlled transport of water and ions provided by the 117 Nafion® membrane. Diffusion coefficients of water and the derivatizing agent (Hg2+) were evaluated, showing the positive influence of the protein drop volume on the number of crystals and crystal size. This microfluidic system allowed for crystals with good structural stability and high X-ray diffraction quality and, thus, it is regarded as an efficient tool that may contribute to the enhancement of the proteins’ crystals structural resolution.

Kiefersauer, R, Stetefeld J, GomisRuth FX, Romao MJ, Lottspeich F, Huber R.  1996.  Protein-crystal density by volume measurement and amino-acid analysis. Journal of Applied Crystallography. 29:311-317. AbstractWebsite
n/a
Najmudin, S, Pinheiro BA, Romao MJ, Prates JAM, Fontes CMGA.  2008.  Purification, crystallization and crystallographic analysis of Clostridium thermocellum endo-1,4-beta-D-xylanase 10B in complex with xylohexaose. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 64:715-718. AbstractWebsite
n/a
Carvalho, AL, Dias JM, Sanz L, Romero A, Calvete JJ, Romao MJ.  2001.  Purification, crystallization and identification by X-ray analysis of a prostate kallikrein from horse seminal plasma. Acta Crystallographica Section D-Biological Crystallography. 57:1180-1183. AbstractWebsite
n/a
Bras, JLA, Correia MAS, Romao MJ, Prates JAM, Fontes CMGA, Najmudin S.  2011.  Purification, crystallization and preliminary X-ray characterization of the pentamodular arabinoxylanase CtXyl5A from Clostridium thermocellum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 67:833-836. AbstractWebsite
n/a
Gavel, OY, Kladova AV, Bursakov SA, Dias JM, Texeira S, Shnyrov VL, Moura JJG, Moura I, Romao MJ, Trincao J.  2008.  Purification, crystallization and preliminary X-ray diffraction analysis of adenosine triphosphate sulfurylase (ATPS) from the sulfate-reducing bacterium Desulfovibrio desulfuricans ATCC 27774. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 64:593-595. AbstractWebsite
n/a
Trincao, J, Silva MS, Barata L, Bonifacio C, Carvalho S, Tomas AM, Ferreira AEN, Cordeiro C, Freire AP, Romao MJ.  2006.  Purification, crystallization and preliminary X-ray diffraction analysis of the glyoxalase II from Leishmania infantum. Acta Crystallographica Section F-Structural Biology and Crystallization Communications. 62:805-807. AbstractWebsite
n/a
Najmudin, S, Pinheiro BA, Prates JAM, Gilbert HJ, Romao MJ, Fontes CMGA.  2010.  Putting an N-terminal end to the Clostridium thermocellum xylanase Xyn10B story: Crystal structure of the CBM22-1-GH10 modules complexed with xylohexaose. Journal of Structural Biology. 172:353-362., Number 3 AbstractWebsite
n/a
Viciosa, MT, Correia NT, Salmeron Sanchez M, Carvalho AL, Romao MJ, Gomez Ribelles JL, Dionisio M.  2009.  Real-Time Monitoring of Molecular Dynamics of Ethylene Glycol Dimethacrylate Glass Former. Journal of Physical Chemistry B. 113:14209-14217., Number 43 AbstractWebsite
n/a
dos Santos, R, Carvalho AL, Roque CAA.  2017.  Renaissance of protein crystallization and precipitation in biopharmaceuticals purification, 2017/1//. Biotechnology Advances. 35(1):41-50. AbstractWebsite

AbstractThe current chromatographic approaches used in protein purification are not keeping pace with the increasing biopharmaceutical market demand. With the upstream improvements, the bottleneck shifted towards the downstream process. New approaches rely in Anything But Chromatography methodologies and revisiting former techniques with a bioprocess perspective. Protein crystallization and precipitation methods are already implemented in the downstream process of diverse therapeutic biological macromolecules, overcoming the current chromatographic bottlenecks. Promising work is being developed in order to implement crystallization and precipitation in the purification pipeline of high value therapeutic molecules. This review focuses in the role of these two methodologies in current industrial purification processes, and highlights their potential implementation in the purification pipeline of high value therapeutic molecules, overcoming chromatographic holdups.

Honzicek, J, Mukhopadhyay A, Santos-Silva T, Romao MJ, Romao CC.  2009.  Ring-Functionalized Molybdenocene Complexes. Organometallics. 28:2871-2879., Number 9 AbstractWebsite
n/a
Gomes, AS, Ramos H, Gomes S, Loureiro JB, Soares J, Barcherini V, Monti P, Fronza G, Oliveira C, Domingues L, Bastos M, Dourado DFAR, Carvalho AL, Romão MJ, Pinheiro B, Marcelo F, Carvalho A, Santos MMM, Saraiva L.  2020.  SLMP53-1 interacts with wild-type and mutant p53 DNA-binding domain and reactivates multiple hotspot mutations, 2020. 1864(1):129440. AbstractWebsite

BackgroundHalf of human cancers harbour TP53 mutations that render p53 inactive as a tumor suppressor. As such, reactivation of mutant (mut)p53 through restoration of wild-type (wt)-like function represents one of the most promising therapeutic strategies in cancer treatment. Recently, we have reported the (S)-tryptophanol-derived oxazoloisoindolinone SLMP53-1 as a new reactivator of wt and mutp53 R280K with in vitro and in vivo p53-dependent antitumor activity. The present work aimed a mechanistic elucidation of mutp53 reactivation by SLMP53-1.
Methods and results
By cellular thermal shift assay (CETSA), it is shown that SLMP53-1 induces wt and mutp53 R280K thermal stabilization, which is indicative of intermolecular interactions with these proteins. Accordingly, in silico studies of wt and mutp53 R280K DNA-binding domain with SLMP53-1 unveiled that the compound binds at the interface of the p53 homodimer with the DNA minor groove. Additionally, using yeast and p53-null tumor cells ectopically expressing distinct highly prevalent mutp53, the ability of SLMP53-1 to reactivate multiple mutp53 is evidenced.
Conclusions
SLMP53-1 is a p53-activating agent with the ability to directly target wt and a set of hotspot mutp53.
General Significance
This work reinforces the encouraging application of SLMP53-1 in the personalized treatment of cancer patients harboring distinct p53 status.

Goodfellow, BJ, Tavares P, Romao MJ, Czaja C, Rusnak F, Legall J, Moura I, Moura JJG.  1996.  The solution structure of desulforedoxin, a simple iron-sulfur protein - An NMR study of the zinc derivative. Journal of Biological Inorganic Chemistry. 1:341-354., Number 4 AbstractWebsite
n/a
Viegas, A, Sardinha J, Freire F, Duarte DF, Carvalho AL, Fontes CMGA, Romao MJ, Macedo AL, Cabrita EJ.  2013.  Solution structure, dynamics and binding studies of a family 11 carbohydrate-binding module from Clostridium thermocellum (CtCBM11). Biochemical Journal. 451:289-300. AbstractWebsite
n/a
Goodfellow, BJ, Freire F, Carvalho AL, Aveiro SS, Charbonnier P, Moulis J-M, Delgado L, Ferreira GC, Rodrigues JE, Poussin-Courmontagne P, Birck C, McEwen A, Macedo AL.  2021.  The SOUL family of heme-binding proteins: Structure and function 15 years later, 2021. 448:214189. AbstractWebsite

The SOUL, or heme-binding protein HBP/SOUL, family represents a group of evolutionary conserved putative heme-binding proteins that contains a number of members in animal, plant andbacterial species. The structures of the murine form of HEBP1, or p22HBP, and the human form of HEBP2, or SOUL, have been determined in 2006 and 2011 respectively. In this work we discuss the structures of HEBP1 and HEBP2 in light of new X-ray data for heme bound murine HEBP1. The interaction between tetrapyrroles and HEBP1, initially proven to be hydrophobic in nature, was thought to also involve electrostatic interactions between heme propionate groups and positively charged amino acid side chains. However, the new X-ray structure, and results from murine HEBP1 variants and human HEBP1, confirm the hydrophobic nature of the heme-HEBP1 interaction, resulting in Kd values in the low nanomolar range, and rules out any electrostatic stabilization. Results from NMR relaxation time measurements for human HEBP1 describe a rigid globular protein with no change in motional regime upon heme binding. X-ray structures deposited in the PDB for human HEBP2 are very similar to each other and to the new heme-bound murine HEBP1 X-ray structure (backbone rmsd ca. 1 Å). Results from a HSQC spectrum centred on the histidine side chain Nδ-proton region for HEBP2 confirm that HEBP2 does not bind heme via H42 as no chemical shift differences were observed upon heme addition for backbone NH and Nδ protons. A survey of the functions attributed to HEBP1 and HEBP2 over the last 20 years span a wide range of cellular pathways. Interestingly, many of them are specific to higher eukaryotes, particularly mammals and a potential link between heme release under oxidative stress and human HEBP1 is also examined using recent data. However, at the present moment, trying to relate function to the involvement of heme or tetrapyrrole binding, specifically, makes little sense with our current biological knowledge and can only be applied to HEBP1, as HEBP2 does not interact with heme. We suggest that it may not be justified to call this very small family of proteins, heme-binding proteins. The family may be more correctly called “the SOUL family of proteins related to cellular fate” as, even though only HEBP1 binds heme tightly, both proteins may be involved in cell survival and/or proliferation.

Oliveira, AR, Mota C, Klymanska K, Biaso F, Romão MJ, Guigliarelli B, Pereira IC.  2022.  Spectroscopic and Structural Characterization of Reduced Desulfovibrio vulgaris Hildenborough W-FdhAB Reveals Stable Metal Coordination during Catalysis, 2022. ACS Chemical BiologyACS Chemical Biology. 17(7):1901-1909.: American Chemical Society AbstractWebsite

Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.Metal-dependent formate dehydrogenases are important enzymes due to their activity of CO2 reduction to formate. The tungsten-containing FdhAB formate dehydrogenase from Desulfovibrio vulgaris Hildenborough is a good example displaying high activity, simple composition, and a notable structural and catalytic robustness. Here, we report the first spectroscopic redox characterization of FdhAB metal centers by EPR. Titration with dithionite or formate leads to reduction of three [4Fe–4S]1+ clusters, and full reduction requires Ti(III)–citrate. The redox potentials of the four [4Fe–4S]1+ centers range between −250 and −530 mV. Two distinct WV signals were detected, WDV and WFV, which differ in only the g2-value. This difference can be explained by small variations in the twist angle of the two pyranopterins, as determined through DFT calculations of model compounds. The redox potential of WVI/V was determined to be −370 mV when reduced by dithionite and −340 mV when reduced by formate. The crystal structure of dithionite-reduced FdhAB was determined at high resolution (1.5 Å), revealing the same structural alterations as reported for the formate-reduced structure. These results corroborate a stable six-ligand W coordination in the catalytic intermediate WV state of FdhAB.

Pires, VMR, Pereira PMM, Brás JLA, Correia M, Cardoso V, Bule P, Alves VD, Najmudin S, Venditto I, Ferreira LMA, Romão MJ, Carvalho AL, Fontes CMGA, Prazeres DM.  2017.  Stability and ligand promiscuity of type A carbohydrate-binding modules are illustrated by the structure of Spirochaeta thermophila StCBM64C, mar. Journal of Biological Chemistry. 292:4847–4860., Number 12 AbstractWebsite

Deconstruction of cellulose, the most abundant plant cell wall polysaccharide, requires the cooperative activity of a large repertoire of microbial enzymes. Modular cellulases contain non-catalytic type A Carbohydrate-Binding Modules (CBMs) that specifically bind to the crystalline regions of cellulose, thus promoting enzyme efficacy through proximity and targeting effects. Although type A CBMs play a critical role in cellulose recycling, their mechanism of action remains poorly understood. Here we produced a library of recombinant CBMs representative of the known diversity of type A modules. The binding properties of 40 CBMs, in fusion with an N-terminal green fluorescence protein (GFP) domain, revealed that type A CBMs possess the ability to recognize different crystalline forms of cellulose and chitin over a wide range of temperatures, pHs and ionic strengths. A Spirochaeta thermophila CBM64, in particular, displayed plasticity in its capacity to bind both crystalline and soluble carbohydrates under a wide range of extreme conditions. The structure of S. thermophila StCBM64C revealed an untwisted, flat, carbohydrate-binding interface comprising the side chains of four tryptophan residues in a coplanar linear arrangement. Significantly, two highly conserved asparagine side chains, each one located between two tryptophan residues, are critical to insoluble and soluble glucan recognition but not to bind xyloglucan. Thus, CBM64 compact structure and its extended and versatile ligand interacting platform illustrates how type A CBMs target their appended plant cell wall degrading enzymes to a diversity of recalcitrant carbohydrates under a wide range of environmental conditions.