Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
2018
Svahn, N, Moro AJ, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista PV, Fernandes AR, Lima JC, Rodriguez L.  2018.  The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, 2018. Chemistry. 24(55):14654-14667. AbstractWebsite

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 mum) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 mum), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-Hpi contacts as the main driving forces for the three-dimensional packing in these molecules.

Santarsia, S, Grosso AS, Trovão F, Jiménez-Barbero J, Carvalho AL, Nativi C, Marcelo F.  2018.  Molecular recognition of a Thomsen-Friedenreich antigen mimetic targeting human galectin-3, 2018. ChemMedChem. Aug 9. doi: 10.1002/cmdc.201800525. [Epub ahead of print](ja): Wiley-Blackwell AbstractWebsite

Overexpression of the Thomsen-Friedenreich (TF) antigen in cell membrane proteins occurs in 90% of adenocarcinomas. Additionally, the binding of the TF-antigen to human galectin-3 (Gal-3), also frequently overexpressed in malignancy, promotes cancer progression and metastasis. In this context, structures that interfere with this specific interaction display the potential to prevent cancer metastasis. Herein, a multidisciplinary approach, combining the optimized synthesis of a TF-antigen mimetic with NMR, X-ray crystallography methods and isothermal titration calorimetry assays has been employed to unravel the molecular structural details that govern the Gal-3/TF-mimetic interaction. The TF-mimetic presents a binding affinity for Gal-3 similar to the TF-natural antigen and retains the binding epitope and the bioactive conformation observed for the native antigen. Furthermore, from a thermodynamic perspective a decrease in the enthalpic contribution was observed for the Gal-3/TF-mimetic complex, however this behaviour is compensated by a favourable entropy gain. From a structural perspective, these results establish our TF-mimetic as a scaffold to design multivalent solutions to potentially interfere with Gal-3 aberrant interactions and likely be used to hamper Gal-3-mediated cancer cells adhesion and metastasis.

Alves, PU, Vinhas R, Fernandes AR, Birol SZ, Trabzon L, Bernacka-Wojcik I, Igreja R, Lopes P, Baptista PV, Águas H, Fortunato E, Martins R.  2018.  Multifunctional microfluidic chip for optical nanoprobe based RNA detection - application to Chronic Myeloid Leukemia, 2018. Scientific reports. 8(1):381. Abstract
n/a
Alves, PU, Vinhas R, Fernandes AR, Birol SZ, Trabzon L, Bernacka-Wojcik I, Igreja R, Lopes P, Baptista PV, Aguas H, Fortunato E, Martins R.  2018.  Multifunctional microfluidic chip for optical nanoprobe based RNA detection - application to Chronic Myeloid Leukemia, 2018. Sci Rep. 8(1):381. AbstractWebsite

Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.

Baptista, PV, McCusker MP, Carvalho A, Ferreira DA, Mohan NM, Martins M, Fernandes AR.  2018.  Nano-Strategies to Fight Multidrug Resistant Bacteria—“A Battle of the Titans”, 2018. 9(1441) AbstractWebsite

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

Matias, AS, Vinhas R, Mendes R, Fernandes AR, Baptista PV.  2018.  Nanoparticles as emerging diagnostic tools in liquid tumours, 2018. European Medical J Innov. 2(1):80-87. Abstract
n/a
Vinhas, R, Lourenco A, Santos S, Lemos M, Ribeiro P, de Sousa AB, Baptista PV, Fernandes AR.  2018.  A novel BCR-ABL1 mutation in a patient with Philadelphia chromosome-positive B-cell acute lymphoblastic leukemia, 2018. Onco Targets Ther. 11:8589-8598. AbstractWebsite

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) represents the most common genetic subtype of adult ALL (20%-30%) and accounts for approximately 50% of all cases in the elderly. It has been considered the subgroup of ALL with the worst outcome. The introduction of tyrosine kinase inhibitors (TKIs) allows complete hematologic remission virtually in all patients, with improved disease-free survival and overall survival. Nevertheless, the emergence of resistant mutations in BCR-ABL1 may require different TKI strategies to overcome the patient's resistance and disease relapse. Here, we report a Ph+B-ALL case with persistent minimal residual disease (MRD) after treatment with dasatinib. The patient expressed the P190(BCR-ABL1) isoform and a novel BCR-ABL1 mutation, p.Y440C. The latter is in the C-terminal lobe of the kinase domain, which likely induces deviations in the protein structure and activity and destabilizes its inactive conformation. The treatment was substituted by bosutinib, which binds to the active conformation of the protein, prior to allogeneic bone marrow transplant to overcome the lack of a complete response to dasatinib. These findings strengthen the importance of BCR-ABL1 mutational screening in Ph+ patients, particularly for those who do not achieve complete molecular remission.

Mendes, MJ, Haque S, Sanchez-Sobrado O, Araújo A, Águas H, Fortunato E, Martins R.  2018.  Optimal-Enhanced Solar Cell Ultra-thinning with Broadband Nanophotonic Light Capture, 2018. iScienceiScience. 3:238-254.: Elsevier AbstractWebsite
n/a
Restani, RB, Pires RF, Tolmatcheva A, Cabral R, Baptista PV, Fernandes AR, Casimiro T, Bonifácio VDB, Aguiar-Ricardo A.  2018.  POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy, 2018. 7(10):772-779. AbstractWebsite

Abstract POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

Lenis-Rojas, OA, Robalo MP, Tomaz AI, Carvalho A, Fernandes AR, Marques F, Folgueira M, Yanez J, Vazquez-Garcia D, Lopez Torres M, Fernandez A, Fernandez JJ.  2018.  Ru(II)( p-cymene) Compounds as Effective and Selective Anticancer Candidates with No Toxicity in Vivo, 2018. Inorg Chem. 57(21):13150-13166. AbstractWebsite

Ruthenium(II) complexes are currently considered a viable alternative to the widely used platinum complexes as efficient anticancer agents. We herein present the synthesis and characterization of half-sandwich ruthenium compounds with the general formula [Ru( p-cymene)(L-N,N)Cl][CF3SO3] (L = 3,6-di-2-pyridyl-1,2,4,5-tetrazine (1) 6,7-dimethyl-2,3-bis(pyridin-2-yl)quinoxaline (2)), which have been synthesized by substitution reactions from the precursor dimer [Ru( p-cymene)(Cl)(mu-Cl)]2 and were characterized by elemental analysis, mass spectrometry, (1)H NMR, UV-vis, and IR spectroscopy, conductivity measurements, and cyclic voltammetry. The molecular structure for complex 2 was determined by single-crystal X-ray diffraction. The cytotoxic activity of these compounds was evaluated against human tumor cells, namely ovarian carcinoma A2780 and breast MCF7 and MDAMB231 adenocarcinoma cells, and against normal primary fibroblasts. Whereas the cytotoxic activity of 1 is moderate, IC50 values found for 2 are among the lowest previously reported for Ru( p-cymene) complexes. Both compounds present no cytotoxic effect in normal human primary fibroblasts when they are used at the IC50 concentration in A2780 and MCF7 cancer cells. Their antiproliferative capacity is associated with a combined mechanism of apoptosis and autophagy. A strong interaction with DNA was observed for both with a binding constant value of the same magnitude as that of the classical intercalator [Ru(phen)2(dppz)](2+). Both complexes bind to human serum albumin with moderate to strong affinity, with conditional binding constants (log Kb) of 4.88 for complex 2 and 5.18 for complex 1 in 2% DMSO/10 mM Hepes pH7.0 medium. The acute toxicity was evaluated in zebrafish embryo model using the fish embryo acute toxicity test (FET). Remarkably, our results show that compounds 1 and 2 are not toxic/lethal even at extremely high concentrations. The novel compounds reported herein are highly relevant antitumor metallodrug candidates, given their in vitro cytotoxicity toward cancer cells and the lack of in vivo toxicity.

Maron, A, Czerwinska K, Machura B, Raposo L, Roma-Rodrigues C, Fernandes AR, Malecki JG, Szlapa-Kula A, Kula S, Krompiec S.  2018.  Spectroscopy, electrochemistry and antiproliferative properties of Au(iii), Pt(ii) and Cu(ii) complexes bearing modified 2,2':6',2''-terpyridine ligands, 2018. Dalton Trans. 47(18):6444-6463. AbstractWebsite

Structural, spectroscopic and electrochemical properties of six complexes [AuCl(L1)](PF6)2.CH3CN (1), [AuCl(L2)](PF6)2 (2), [PtCl(L1)](BPh4).CH3CN (3), [PtCl(L2)](SO3CF3) (4), [CuCl2(L1)] (5) and [CuCl2(L2)].CH3CN (6) with modified 2,2':6',2''-terpyridine ligands, 4'-(4-methoxyphenyl)-2,2':6',2''-terpyridine (L1) and 4'-(4-methoxynaphthalen-1-yl)-2,2':6',2''-terpyridine (L2) were thoroughly investigated and a significant role of the substituent (4-methoxyphenyl or 4-methoxynaphthalen-1-yl) and the metal center was demonstrated. The naphthyl-based substituent was found to increase the emission quantum yield of the luminescent Au(iii) and Pt(ii) complexes. Furthermore, the antiproliferative potential of the reported complexes was examined towards human colorectal (HCT116) and ovarian (A2780) carcinoma cell lines as well as towards normal human fibroblasts. The Au(iii) complex 2 and Cu(ii) complex 5 were found to have a higher antiproliferative effect on HCT116 colorectal and A2780 ovarian carcinoma cells when compared with the Pt(ii) complex with the same ligand (4). The order of cytotoxicity in both cell lines is 2 > 6 > 1 > 3 > 4. Complex 2 seems to be more cytotoxic towards HCT116 and A2780 cancer cell lines with IC50 values 300x and 130x higher in normal human fibroblasts compared to the respective cancer cells. The viability loss induced by the complexes agrees with Hoechst 33258 staining and the typical morphological apoptotic characteristics like chromatin condensation and nuclear fragmentation and flow cytometry assay. The induction of apoptosis correlates with the induction of reactive oxygen species (ROS). Fluorescence microscopy analysis indicates that after 3 h of incubation, complexes 1-4 are localized inside HCT116 cells and the high levels of internalization correlate with their cytotoxicity.

Bathula, C, Roma-Rodrigues C, Chauhan J, Fernandes AR, Sen S.  2018.  Synthesis of tetrahydro-1H-indolo[2,3-b]pyrrolo[3,2-c]quinolones via intramolecular oxidative ring rearrangement of tetrahydro-β-carbolines and their biological evaluation, 2018. New Journal of Chemistry. 42(8):6538-6547. AbstractWebsite

A simple oxidative ring rearrangement of diversely substituted 1-(2-amminoaryl)-tetrahydro-β-carbolines has been developed to generate architecturally interesting tetrahydro-1H-indolo[2,3-b]pyrrolo[3,2-c]quinolones. This unique transformation involves four reaction centers (aniline, C1-carboline and C2/C3 of indole) and utilizes tert-butylhypochlorite as the reagent. The generic nature of the reaction was demonstrated by the synthesis of a wide variety of analogs 9a–j. A putative reaction mechanism was proposed. Cytotoxicity screening of these compounds against three human cancer cells (A2780 ovarian and HCT116 colorectal carcinoma cell lines and A549 lung adenocarcinoma cell line) revealed selective inhibition of proliferation of the A2780 human ovarian carcinoma cell line by one of the molecules 9a with an IC50 of 14 μM. No cytotoxic activity was observed in human normal fibroblasts for concentrations up to 100 μM. Compound 9a induced hyperpolarization of the mitochondrial membrane potential of the A2780 cell line leading to an increase of reactive oxygen species (ROS) that trigger cell death via apoptosis. Interestingly, compound 9a was also able to induce cell death via autophagy. Compounds that induce apoptosis and autophagy, thus leading to cancer cells’ death, are good candidates for cancer therapy.

Peixoto, D, Figueiredo M, Malta G, Roma-Rodrigues C, Baptista PV, Fernandes AR, Barroso S, Carvalho AL, Afonso CAM, Ferreira LM, Branco PS.  2018.  Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero-Arylidene-9(10H)-Anthrone, 2018. 2018(4):545-549. AbstractWebsite

A new and never before reported hetero-arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally confirmed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed, indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity [Kb = 2.0 (±0.20) × 105 m–1], which is 10 × higher than that described for doxorubicin [Kb = 3.2 (±0.23) × 104 m–1]. Furthermore, compound 4 quenches the fluorescence emission of a GelRed–CT-DNA system with a quenching constant (KSV) of 3.3 (±0.3) × 103 m–1 calculated by the Stern–Volmer equation.

Dias, D, Bernardo M, Lapa N, Pinto F, Matos I, Fonseca I.  2018.  Activated carbons from the Co-pyrolysis of rice wastes for Cr(III) removal. Chemical Engineering Transactions. 65:601-606.
Krings, B-J, Weinberger N.  2018.  Assistant without Master? Some Conceptual Implications of Assistive Robotics in Health Care Technologies. 18(1) AbstractWebsite

The subject of “technical assistants” in inpatient care is currently being widely discussed in scientific and public circles. In many cases, though, it has become apparent that the umbrella term “assistive technologies”, also in the context of robotics, is very contrived. Against this background, the authors of this article reflect on the meaning of “assistance” in socio-technical systems, and critically review its relevance. To understand and demonstrate “assistive” functions, it is essential to establish a frame of reference. The re-evaluation of an empirical study of people with dementia in inpatient care has revealed the functional character of technical assistance systems. The results, however, show that the theoretical debate on the social and organisational function of “assistance” in these technical fields is still lacking. Therefore, the reflections in this paper may also provide some starting points for this debate.

Lopes, R, Magalhães P, Gouveia JP, Aelenei D, Lima C, Martins J.  2018.  A case study on the impact of nearly Zero-Energy Buildings on distribution transformer aging. Energy. 157:669-678.
Szymczak, P, Filipe SR, Covas G, Vogensen FK, Neves AR, Janzen T.  2018.  Cell wall glycans mediate recognition of the dairy bacterium Streptococcus thermophilus by bacteriophages. Applied and Environmental Microbiology. 84(23):e01847-18.
Ropio, I, Baptista AC, Nobre JP, Correia J, Belo F, Taborda S, Faustino MBM, Borges JP, Kovalenko A, Ferreira I.  2018.  Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Org Electron. AbstractWebsite

A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.

Ropio, I, Baptista AC, Nobre J, Correia J, Belo F, Taborda S, Faustino MBM, Borges JB, Kovalenko A, Ferreira I.  2018.  Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes. Organic Electronics. 62:530-535. AbstractWebsite

A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.

Baptista, AC, Ropio I, Romba B, Nobre J, Henriques C, Silva JC, Martins JI, Borges JP, Ferreira I.  2018.  Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. Journal of Materials Chemistry A. 6(1):256-265. AbstractWebsite

A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and the support of the electrodes. Polymer composites of polypyrrole (PPy) and polyaniline (PANI) with cellulose acetate (CA) electrospun matrix were produced by in situ chemical oxidation of pyrrole and aniline on the CA fibers. The structure (CA/PPy|CA|CA/PANI) generated a power density of 1.7 mW g−1 in the presence of simulated biological fluids, which is a new and significant contribution to the domain of medical batteries and fully organic devices for biomedical applications.

Baptista, AC, Ropio I, Romba B, Nobre JP, Henriques C, Silva JC, Martins JI, Borges JP, Ferreira I.  2018.  Cellulose-based electrospun fibers functionalized with polypyrrole and polyaniline for fully organic batteries. J Mater Chem A. 6(1):256-265. AbstractWebsite

A novel cellulose-based bio-battery made of electrospun fibers activated by biological fluids has been developed. This work reports a new concept for a fully organic bio-battery that takes advantage of the high surface to volume ratio achieved by an electrospun matrix composed of sub-micrometric fibers that acts simultaneously as the separator and the support of the electrodes. Polymer composites of polypyrrole (PPy) and polyaniline (PANI) with cellulose acetate (CA) electrospun matrix were produced by in situ chemical oxidation of pyrrole and aniline on the CA fibers. The structure (CA/PPy|CA|CA/PANI) generated a power density of 1.7 mW g−1 in the presence of simulated biological fluids, which is a new and significant contribution to the domain of medical batteries and fully organic devices for biomedical applications.

Giannakidis, G, Gargiulo M, De Miglio R, Chiodi A, Seixas J, Simoes SG, Dias L, Gouveia J.  2018.  Challenges faced when addressing the role of cities towards a below 2-degree world. Limiting Global Warming to Well Below 2°C: Energy System Modelling and Policy Development. (Giannakidis G., K. Karlsson, M. Labriet, B. Ó Gallachóir, Eds.).: Lecture Notes in Energy 64. Springer International publishing. Doi: 10.1007/978-3-319-74424-7
Faustino, BMM, Gomes D, Faria J, Juntunen T, Gaspar G, Bianchi C, Almeida A, Marques AC, Tittonen I, Ferreira I.  2018.  CuI p-type thin films for highly transparent thermoelectric pn modules. Sci Rep. 8(1):6867-6867. AbstractWebsite

Developments in thermoelectric (TE) transparent p-type materials are scarce and do not follow the trend of the corresponding n-type materials – a limitation of the current transparent thermoelectric devices. P-type thermoelectric thin films of CuI have been developed by three different methods in order to maximise optical transparency (>70% in the visible range), electrical (σ = 1.1 × 104 Sm−1) and thermoelectric properties (ZT = 0.22 at 300 K). These have been applied in the first planar fully transparent p-n type TE modules where gallium-doped zinc oxide (GZO) thin films were used as the n-type element and indium thin oxide (ITO) thin films as electrodes. A thorough study of power output in single elements and p-n modules electrically connected in series and thermally connected in parallel is inclosed. This configuration allows for a whole range of highly transparent thermoelectric applications.