Export 4172 results:
Sort by: Author Title Type [ Year  (Desc)]
2019
Alexandre, M, Chapa M, Haque S, Mendes MJ, Águas H, Fortunato E, Martins R.  2019.  Optimum Luminescent Down-Shifting Properties for High Efficiency and Stable Perovskite Solar Cells. ACS Applied Energy Materials. 2:2930-2938., Number 4 AbstractWebsite

In recent years, the discovery of the excellent optical and electrical properties of perovskite solar cells (PSCs) made them a main focus of research in photovoltaics, with efficiency records increasing astonishingly fast since their inception. However, problems associated with the stability of these devices are hindering their market application. UV degradation is one of the most severe issues, chiefly caused by TiO2’s photogenerated electrons that decompose the perovskite absorber material, coupled with the additional intrinsic degradation of this material under UV exposure. The solution presented here can minimize this effect while boosting the cells’ generated photocurrent, by making use of combined light-trapping and luminescent down-shifting effects capable of changing the harmful UV radiation to higher wavelengths that do not affect the stability and can be effectively “trapped” in the cell. This work focuses in the optimization of the photocurrent gains that can be attained by emulating the changed spectrum resulting from applying down-shifting media as encapsulant in photonic-enhanced PSCs, as well as the reduction in the harmful effects of UV radiation on the devices. Such optimized photonic solution allows current enhancement while reducing the harmful UV photocarrier generation both in the TiO2 (by 1 order of magnitude) and in the perovskite (by 80%) relative to a standard PSC without light management.

Haque, S, Mendes MJ, Sanchez-Sobrado O, Águas H, Fortunato E, Martins R.  2019.  Photonic-structured TiO2 for high-efficiency, flexible and stable Perovskite solar cells. Nano Energy. 59:91-101. AbstractWebsite

Optical solutions are promising for Perovskite solar cell (PSC) technology, not only to increase efficiency, but also to allow thinner absorber layers (higher flexibility) and improve stability. This work optimized the combined anti-reflection and scattering properties of two types of light trapping (LT) structures, based on TiO2 semi-spheroidal geometries with honeycomb periodicity, for application in PSCs with substrate configuration and different perovskite layer thicknesses. Their optically lossless material (TiO2) allows the structures to be patterned in the final processing steps, integrated in the cells’ top n contact, therefore not increasing the surface area of the PV layers and not degrading the electric performance via recombination. Therefore, this strategy circumvents the typical compromise of state-of-the-art LT approaches between optical improvements and electrical deterioration, which is particularly relevant for PSCs since their main recombination is caused by surface defects. When patterned on the cells’ front, the wave-optical micro-features composing the LT structures yield up to 21% and 27% photocurrent enhancement in PSCs with conventional (500 nm thick) and ultra-thin (250 nm) perovskite layers, respectively; which are improvements close to those predicted by theoretical Lambertian limits. In addition, such features are shown to provide an important encapsulation role, preventing the cells’ degradation from UV penetration.

Morawiec, S, Mendes MJ, Priolo F, Crupi I.  2019.  Plasmonic nanostructures for light trapping in thin-film solar cells. Materials Science in Semiconductor Processing. 92:10-18. AbstractWebsite

The optical properties of localized surface plasmon resonances (LSPR) sustained by self-assembled silver nanoparticles are of great interest for enhancing light trapping in thin film photovoltaics. First, we report on a systematic investigation of the structural and the optical properties of silver nanostructures fabricated by a solid-state dewetting process on various substrates. Our study allows to identify fabrication conditions in which circular, uniformly spaced nanoparticles are obtainable. The optimized NPs are then integrated into plasmonic back reflector (PBR) structures. Second, we demonstrate a novel procedure, involving a combination of opto-electronic spectroscopic techniques, allowing for the quantification of useful and parasitic absorption in thin photovoltaic absorber deposited on top of the PBR. We achieve a significant broadband useful absorption enhancement of 90% for 0.9 µm thick μc-Si:H film and demonstrate that optical losses due to plasmonic scattering are insignificant below 730 nm. Finally, we present a successful implementation of a plasmonic light trapping scheme in a thin film a-Si:H solar cell. The quantum efficiency spectra of the devices show a pronounced broadband enhancement resulting in remarkably high short circuit current densities (Jsc).

Godino-Ojer, M, Blazquez-García R, Matos I, Bernardo M, Fonseca IM, Mayoral PE.  2019.  Porous carbons-derived from vegetal biomass in the synthesis of quinoxalines. Mechanistic insights. Catalysis Today. AbstractWebsite

We report herein for the first-time acid biomass-derived carbons from vegetal biomass, with high developed porosity, prepared through integrating method comprising pyrolysis and surface phosphonation, able to efficiently catalyze the synthesis of quinoxalines from 1,2-diamines and α-hydroxi ketones, under aerobic conditions. The obtained results indicate that the reaction is mainly driven by a combination of acid function strength and textural properties in terms of conversion and selectivity. Furthermore, our experimental and theoretical observations suggest that the preferred reaction pathway for this transformation, in the presence of the investigated acid carbon catalysts, involves cascade reactions including imination reaction between reactants, successive imine-enamine and keto-enol tautomerisms, heterocyclization followed by dehydration, and aromatization. While the acid sites seem to be a relevant role in each reaction step, the system formed by activated carbon and molecular oxygen could be behind the last oxidative reaction to give the corresponding nitrogen heterocycles.

Salgueiro, CA, Dantas JM, Morgado L.  2019.  Principles of Nuclear Magnetic Resonance and Selected Biological Applications. Radiation in Bioanalysis: Spectroscopic Techniques and Theoretical Methods. (Pereira, Alice S., Tavares, Pedro, Limão-Vieira, Paulo, Eds.).:245–286., Cham: Springer International Publishing Abstract

Nuclear Magnetic Resonance (NMR) spectroscopy is extremely powerful to study distinct biological systems ranging from biomolecules to specific metabolites. This chapter presents the basic concepts of the technique and illustrates its potential to study such systems. Similarly, to other spectroscopic techniques, the theoretical background of NMR is sustained by detailed mathematics and physical chemistry concepts, which were kept to the minimum. The intent is to introduce the fundamentals of the technique to science students from different backgrounds. The basic concepts of NMR spectroscopy are briefly presented in the first section, and the following sections describe applications in the biosciences field, using electron transfer proteins as model, particularly cytochromes. The heme groups endow cytochromes with particular features making them excellent examples to illustrate the high versatility of NMR spectroscopy. The main methodologies underlying protein solution structure determination are discussed in the second section. This is followed by a description of the main experiments explored to structurally map protein-protein or protein-ligand interface regions in molecular complexes. Finally, it is shown how NMR spectroscopy can assist in the functional characterization of multiheme cytochromes.

Correia, VG, Pinheiro BA, Carvalho AL, Palma AS.  2019.  Resistance to Aminoglycosides. Antibiotic Drug Resistance. :1-38.: John Wiley & Sons, Ltd Abstract

Summary The emergence of bacterial resistance to different antibiotics in clinical use, together with the knowledge on the mechanisms by which bacteria resist the action of aminoglycosides, have contributed to the renewed interest in these molecules as potential antimicrobials. Here, we give an overview on natural and semisynthetic aminoglycosides and their structural features and modes of action, focusing on the structural insight underlying resistance mechanisms. Developments on carbohydrate chemistry and microarray technology are highlighted as powerful approaches toward generation of new aminoglycosides and for screening their interactions with RNAs and proteins. The link between antibiotic uptake and the human gut microbiome is also addressed, focusing on gut microbiome function and composition, antibiotic-induced alterations in host health, and antibiotic resistance. In addition, strategies to modulate human microbiome responses to antibiotics are discussed as novel approaches for aminoglycoside usage and for the effectiveness of antibiotic therapy.

Alves-Barroco, C, Roma-Rodrigues C, Raposo LR, Brás C, Diniz M, Caço J, Costa PM, Santos-Sanches I, Fernandes AR.  2019.  Streptococcus dysgalactiae subsp. dysgalactiae isolated from milk of the bovine udder as emerging pathogens: In vitro and in vivo infection of human cells and zebrafish as biological models. MicrobiologyOpen. 8:e00623., Number 1 AbstractWebsite

Abstract Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability.

Dantas, JM, Portela PC, Fernandes AP, Londer YY, Yang X, Duke NEC, Schiffer M, Pokkuluri RP, Salgueiro CA.  2019.  Structural and Functional Relevance of the Conserved Residue V13 in the Triheme Cytochrome PpcA from Geobacter sulfurreducens. The Journal of Physical Chemistry B. 123:3050-3060., Number 14 AbstractWebsite

The triheme cytochrome PpcA from Geobacter sulfurreducens is highly abundant under several growth conditions and is important for extracellular electron transfer. PpcA plays a central role in transferring electrons resulting from the cytoplasmic oxidation of carbon compounds to the cell exterior. This cytochrome is designed to couple electron and proton transfer at physiological pH, a process achieved via the selection of dominant microstates during the redox cycle of the protein, which are ultimately regulated by a well-established order of oxidation of the heme groups. The three hemes are covered only by a polypeptide chain of 71 residues and are located in the small hydrophobic core of the protein. In this work, we used NMR and X-ray crystallography to investigate the structural and functional role of a conserved valine residue (V13) located within van der Waals contact of hemes III and IV. The residue was replaced by alanine (V13A), isoleucine (V13I), serine (V13S), and threonine (V13T) to probe the effects of the side chain volume and polarity. All mutants were found to be as equally thermally stable as the native protein. The V13A and V13T mutants produced crystals and their structures were determined. The side chain of the threonine residue introduced in V13T showed two conformations, but otherwise the two structures did not show significant changes from the native structure. Analysis of the redox behavior of the four mutants showed that for the hydrophobic replacements (V13A and V13I) the redox properties, and hence the order of oxidation of the hemes, were unaffected in spite of the larger side chain, isoleucine, showing two conformations with minor changes of the protein in the heme core. On the other hand, the polar replacements (V13S and V13T) showed the presence of two more distinctive conformations, and the oxidation order of the hemes was altered. Overall, it is striking that a single residue with proper size and polarity, V13, was naturally selected to ensure a unique conformation of the protein and the order of oxidation of the hemes, endowing the cytochrome PpcA with the optimal functional properties necessary to ensure effectiveness in the extracellular electron transfer respiratory pathways of G. sulfurreducens.

Berg, AI, Brivio S, Brown S, Burr G, Deswal S, Deuermeier J, Gale E, Hwang H, Ielmini D, Indiveri G, Kenyon AJ, Kiazadeh A, Köymen I, Kozicki M, Li Y, Mannion D, Prodromakis T, Ricciardi C, Siegel S, Speckbacher M, Valov I, Wang W, Williams RS, Wouters D, Yang Y.  2019.  Synaptic and neuromorphic functions: General discussion. Faraday Discussions. 213:553-578. AbstractWebsite
n/a
Coelho, C, Muthukumaran J, Santos-Silva T, Romão MJ.  2019.  Systematic exploration of predicted destabilizing nonsynonymous single nucleotide polymorphisms (nsSNPs) of human aldehyde oxidase: A Bio-informatics study. Pharmacology Research & Perspectives. 7:e00538., Number 6 AbstractWebsite

Abstract Aldehyde Oxidase (hAOX1) is a cytosolic enzyme involved in the metabolism of drugs and xenobiotic compounds. The enzyme belongs to the xanthine oxidase (XO) family of Mo containing enzyme and is a homo-dimer of two 150 kDa monomers. Nonsynonymous Single Nucleotide Polymorphisms (nsSNPs) of hAOX1 have been reported as affecting the ability of the enzyme to metabolize different substrates. Some of these nsSNPs have been biochemically and structurally characterized but the lack of a systematic and comprehensive study regarding all described and validated nsSNPs is urgent, due to the increasing importance of the enzyme in drug development, personalized medicine and therapy, as well as in pharmacogenetic studies. The objective of the present work was to collect all described nsSNPs of hAOX1 and utilize a series of bioinformatics tools to predict their effect on protein structure stability with putative implications on phenotypic functional consequences. Of 526 nsSNPs reported in NCBI-dbSNP, 119 are identified as deleterious whereas 92 are identified as nondeleterious variants. The stability analysis was performed for 119 deleterious variants and the results suggest that 104 nsSNPs may be responsible for destabilizing the protein structure, whereas five variants may increase the protein stability. Four nsSNPs do not have any impact on protein structure (neutral nsSNPs) of hAOX1. The prediction results of the remaining six nsSNPs are nonconclusive. The in silico results were compared with available experimental data. This methodology can also be used to identify and prioritize the stabilizing and destabilizing variants in other enzymes involved in drug metabolism.

Brites, MJ, Barreiros MA, Corregidor V, Alves LC, V. Pinto J, Mendes MJ, Fortunato E, Martins R, Mascarenhas J.  2019.  Ultrafast Low-Temperature Crystallization of Solar Cell Graded Formamidinium-Cesium Mixed-Cation Lead Mixed-Halide Perovskites Using a Reproducible Microwave-Based Process. ACS Applied Energy Materials. 2:1844-1853., Number 3 AbstractWebsite

The control of morphology and crystallinity of solution-processed perovskite thin-films for solar cells is the key for further enhancement of the devices’ power conversion efficiency and stability. Improving crystallinity and increasing grain size of perovskite films is a proven way to boost the devices’ performance and operational robustness, nevertheless this has only been achieved with high-temperature processes. Here, we present an unprecedented low-temperature (<80 °C) and ultrafast microwave (MW) annealing process to yield uniform, compact, and crystalline FA0.83Cs0.17Pb(I(1–x)Brx)3 perovskite films with full coverage and micrometer-scale grains. We demonstrate that the nominal composition FA0.83Cs0.17PbI1.8Br1.2 perovskite films annealed at 100 W MW power present the same band gap, similar morphology, and crystallinity of conventionally annealed films, with the advantage of being produced at a lower temperature (below 80 °C vs 185 °C) and during a very short period of time (∼2.5 min versus 60 min). These results open new avenues to fabricate band gap tunable perovskite films at low temperatures, which is of utmost importance for mechanically flexible perovskite cells and monolithic perovskite based tandem cells applications.

Aono, M, Baeumer C, Bartlett P, Brivio S, Burr G, Burriel M, Carlos E, Deswal S, Deuermeier J, Dittmann R, Du H, Gale E, Hambsch S, Hilgenkamp H, Ielmini D, Kenyon AJ, Kiazadeh A, Kindsmüller A, Kissling G, Köymen I, Menzel S, Pla Asesio D, Prodromakis T, Santamaria M, Shluger A, Thompson D, Valov I, Wang W, Waser R, Williams RS, Wrana D, Wouters D, Yang Y, Zaffora A.  2019.  Valence change ReRAMs (VCM) - Experiments and modelling: General discussion. Faraday Discussions. 213:259-286. AbstractWebsite
n/a
2018
Chagas, R, Laia CAT, Ferreira RB, Ferreira LM.  2018.  Sulfur dioxide induced aggregation of wine thaumatin-like proteins: Role of disulfide bonds, SEP 1. FOOD CHEMISTRY. 259:166-174. Abstract
n/a
Baptista, {PV}.  2018.  Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics: an update, sep. Expert Review Of Molecular Diagnostics. 18:767–773., Number 9: Expert Reviews Abstract

Introduction: An update on the uses and applications of the non-cross-linking (NCL) hybridization assay based on the spectral modulation of gold nanoparticles (AuNPs) are presented, emphasizing DNA and RNA detection. Areas covered: Nanotechnology is strongly impacting the way we address diagnostics and therapeutics. In fact, nanoscale devices and particles have been used in a variety of platforms for improved biosensing and, more interestingly, for molecular diagnostics. AuNPs have been used in a great diversity of DNA and RNA detection strategies that are based on their nanoscale properties. Their unique optical properties have put them at the forefront of colorimetric sensing platforms. Among these, those relying on the NCL mechanism using DNA-modified AuNPs have shown remarkable versatility and simplicity for molecular detection of human pathogens, identification of single base alterations at the basis of human disease, gene expression, among others. Application of the NCL assay to molecular diagnostics will be discussed considering the challenges for validation and clinically relevant targets. Expert commentary: Integration of the NCL approach using AuNPs into chip biosensing platforms, projecting miniaturization and portability, will be addressed in terms of the future, i.e. clinical validation and translation to market.

Carvalho, AL, Santos-Silva T, Romão MJ, Eurico J, Marcelo F.  2018.  {CHAPTER 2 Structural Elucidation of Macromolecules}, sep. Essential Techniques for Medical and Life Scientists: A Guide to Contemporary Methods and Current Applications with the Protocols. :30–91.: BENTHAM SCIENCE PUBLISHERS AbstractWebsite
n/a
Svahn, N, Moro {AJ }, Roma-Rodrigues C, Puttreddy R, Rissanen K, Baptista {PV}, Fernandes {AR}, Lima {JC}, Rodríguez L.  2018.  The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, oct. Chemistry - A European Journal. 24:14654–14667., Number 55: Wiley Abstract

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 μm) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 μm), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-H⋅⋅⋅π contacts as the main driving forces for the three-dimensional packing in these molecules.

Restani, {RB }, Pires {RF }, Tolmatcheva A, Cabral R, Baptista {PV}, Fernandes {AR}, Casimiro T, Bonifácio {VDB }, Aguiar-Ricardo A.  2018.  POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy, oct. ChemistryOpen. 7:772–779., Number 10: Wiley-VCH Verlag | Wiley Open Access Abstract

POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

Vinhas, R, Louren{\c c}o A, Santos S, Ribeiro P, Silva M, {de Sousa} {AB}, Baptista {PV}, Fernandes {AR}.  2018.  A double Philadelphia chromosome-positive chronic myeloid leukemia patient, co-expressing P210BCR-ABL1 and P195BCR-ABL1 isoforms, nov. Haematologica. 103:e549–e552., Number 11: Ferrata Storti Foundation Abstract
n/a
Almeida, APC, Canejo JP, Fernandes SN, Echeverria C, Almeida PL, Godinho MH.  2018.  Cellulose-{{Based Biomimetics}} and {{Their Applications}}, may. Advanced Materials. 30:1703655., Number 19 Abstract
n/a
Ribeiro, {APC}, Anbu S, Alegria {ECBA}, Fernandes {AR }, Baptista {PV }, Mendes R, Matias {AS}, Mendes M, {Guedes da Silva} {MFC}, Pombeiro {AJL}.  2018.  Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles, may. Biomedicine and Pharmacotherapy. 101:137–144.: Elsevier Abstract

Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC50 (0.5 ± 0.1 μM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC50 5.0 ± 0.1 μM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra.

Cordeiro, M, Otrelo-Cardoso {ARC}, Svergun {DI }, Konarev {PV }, Lima {JC}, Santos-Silva T, Baptista {PV}.  2018.  Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor, may. ACS Chemical Biology. 13:1235–1242., Number 5: ACS - American Chemical Society Abstract

Selective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.

Sequeira, A, Lourenco A, Ferreira LM, Branco PS, Mendes Z, Lourenco NMT, Figueiredo M, Carvalho LCR.  2018.  A Different Approach to the EGFR Inhibitor Gefitinib Involving Solid-Phase Synthesis, JUN. SYNLETT. 29:1346-1350., Number 10 Abstract
n/a
Peixoto, D, Ferreira EP, Lourenco AM, Johnson JL, Lobo AM, Polavarapu PL.  2018.  (R)-Metacycloprodigiosin-HCl: Chiroptical properties and structure, JUL. CHIRALITY. 30:932-942., Number 7 Abstract
n/a
Neves, F, Stark A, Schell N, Mendes MJ, Aguas H, Fortunato E, Martins R, Correia JB, Joyce A.  2018.  Investigation of single phase Cu2ZnSn(x)Sb(1−x)S4 compounds processed by mechanochemical synthesis, Jul. Phys. Rev. Materials. 2:075404.: American Physical Society AbstractWebsite

n/a

Baptista, {PV}, McCusker {MP }, Carvalho A, Ferreira {DA }, Mohan {NM }, Martins M, Fernandes {AR}.  2018.  Nano-strategies to fight multidrug resistant bacteria-{"}A Battle of the Titans{"}, jul. Frontiers in Microbiology. 9, Number JUL: Frontiers Research Foundation Abstract

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.