Publications

Sort by: Type [ Year  (Asc)]
2017
Multifunctional gold-nanoparticles: A nanovectorization tool for the targeted delivery of novel chemotherapeutic agents, Fernandes, {Alexandra R. }, Jesus João, Martins Pedro, Figueiredo Sara, Rosa Daniela, Martins {Luísa M. R. D. R. S. }, Corvo {Maria Luísa}, Carvalheiro {Manuela C. }, Costa {Pedro M. }, and Baptista {Pedro V. } , Journal of Controlled Release, jan, Volume 245, p.52–61, (2017) Abstract

Due to their small size and unique properties, multifunctional nanoparticles arise as versatile delivery systems easily grafted with a vast array of functional moieties, such as anticancer cytotoxic chemotherapeutics and targeting agents. Here, we formulated a multifunctional gold-nanoparticle (AuNP) system composed of a monoclonal antibody against epidermal growth factor receptor (EGFR) (anti-EGFR D-11) for active targeting and a Co(II) coordination compound [CoCl(H2O)(phendione)2][BF4] (phendione = 1,10-phenanthroline-5,6-dione) (TS265) with proven antiproliferative activity towards cancer cells (designated as TargetNanoTS265). The efficacy of this nanoformulation, and the non-targeted counterpart (NanoTS265), were evaluated in vitro using cancer cell models and in vivo using mice xenografts. Compared to the free compound, both nanoformulations (TargetNanoTS265 and NanoTS265) efficiently delivered the cytotoxic cargo in a controlled selective manner due to the active targeting, boosting tumor cytotoxicity. Treatment of HCT116-derived xenografts tumors with TargetNanoTS265 led to 93% tumor reduction. This simple conceptual nanoformulation demonstrates the potential of nanovectorization of chemotherapeutics via simple assembly onto AuNPs of BSA/HAS-drug conjugates that may easily be expanded to suit other cargo of novel compounds that require optimized controlled delivery to cancer target.

Tumor microenvironment modulation via gold nanoparticles targeting malicious exosomes: Implications for cancer diagnostics and therapy, Roma-Rodrigues, Catarina, Raposo {Luís R. }, Cabral Rita, Paradinha Fabiana, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , International Journal of Molecular Sciences, jan, Volume 18, Number 1, (2017) Abstract

Exosomes are nanovesicles formed in the endosomal pathway with an important role in paracrine and autocrine cell communication. Exosomes secreted by cancer cells, malicious exosomes, have important roles in tumor microenvironment maturation and cancer progression. The knowledge of the role of exosomes in tumorigenesis prompted a new era in cancer diagnostics and therapy, taking advantage of the use of circulating exosomes as tumor biomarkers due to their stability in body fluids and targeting malignant exosomes’ release and/or uptake to inhibit or delay tumor development. In recent years, nanotechnology has paved the way for the development of a plethora of new diagnostic and therapeutic platforms, fostering theranostics. The unique physical and chemical properties of gold nanoparticles (AuNPs) make them suitable vehicles to pursuit this goal. AuNPs’ properties such as ease of synthesis with the desired shape and size, high surface:volume ratio, and the possibility of engineering their surface as desired, potentiate AuNPs’ role in nanotheranostics, allowing the use of the same formulation for exosome detection and restraining the effect of malicious exosomes in cancer progression.

Digital microfluidics for nucleic acid amplification, Coelho, Beatriz, Veigas Bruno, Fortunato Elvira, Martins Rodrigo, Águas Hugo, Igreja Rui, and Baptista {Pedro V. } , Sensors, jul, Volume 17, Number 7, (2017) Abstract

Digital Microfluidics (DMF) has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

Gold Nanoparticles for BCR-ABL1 Gene Silencing: Improving Tyrosine Kinase Inhibitor Efficacy in Chronic Myeloid Leukemia, Vinhas, Raquel, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Molecular Therapy - Nucleic Acids, jun, Volume 7, p.408–416, (2017) Abstract

Introduction of tyrosine kinase inhibitors for chronic myeloid leukemia treatment is associated with a 63% probability of maintaining a complete cytogenetic response, meaning that over 30% patients require an alternative methodology to overcome resistance, tolerance, or side effects. Considering the potential of nanotechnology in cancer treatment and the benefits of a combined therapy with imatinib, a nanoconjugate was designed to achieve BCR-ABL1 gene silencing. Gold nanoparticles were functionalized with a single-stranded DNA oligonucleotide that selectively targets the e14a2 BCR-ABL1 transcript expressed by K562 cells. This gold (Au)-nanoconjugate showed great efficacy in gene silencing that induced a significant increase in cell death. Variation of BCL-2 and BAX protein expression, an increase of caspase-3 activity, and apoptotic bodies in cells treated with the nanoconjugate demonstrate its aptitude for inducing apoptosis on K562 BCR-ABL1-expressing cells. Moreover, the combination of the silencing Au-nanoconjugate with imatinib prompted a decrease of imatinib IC50. This Au-nanoconjugate was also capable of inducing the loss of viability of imatinib-resistant K562 cells. This strategy shows that combination of Au-nanoconjugate and imatinib make K562 cells more vulnerable to chemotherapy and that the Au-nanoconjugate alone may overcome imatinib-resistance mechanisms, thus providing an effective treatment for chronic myeloid leukemia patients who exhibit drug tolerance.

Gold nanoparticle approach to the selective delivery of gene silencing in cancer-The case for combined delivery?, Mendes, Rita, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Virus Genes, mar, Volume 8, Number 3, (2017) Abstract

Gene therapy arises as a great promise for cancer therapeutics due to its potential to silence genes involved in tumor development. In fact, there are some pivotal gene drivers that suffer critical alterations leading to cell transformation and ultimately to tumor growth. In this vein, gene silencing has been proposed as an active tool to selectively silence these molecular triggers of cancer, thus improving treatment. However, naked nucleic acid (DNA/RNA) sequences are reported to have a short lifetime in the body, promptly degraded by circulating enzymes, which in turn speed up elimination and decrease the therapeutic potential of these drugs. The use of nanoparticles for the effective delivery of these silencers to the specific target locations has allowed researchers to overcome this issue. Particularly, gold nanoparticles (AuNPs) have been used as attractive vehicles for the target-specific delivery of gene-silencing moieties, alone or in combination with other drugs. We shall discuss current trends in AuNP-based delivery of gene-silencing tools, considering the promising road ahead without overlooking existing concerns for their translation to clinics.

Quantitative real-time monitoring of RCA amplification of cancer biomarkers mediated by a flexible ion sensitive platform, Veigas, Bruno, Pinto Joana, Vinhas Raquel, Calmeiro Tomás, Martins Rodrigo, Fortunato Elvira, and Baptista {Pedro Viana} , Biosensors & Bioelectronics, may, Volume 91, p.788–795, (2017) Abstract

Ion sensitive field-effect transistors (ISFET) are the basis of radical new sensing approaches. Reliable molecular characterization of specific detection of DNA and/or RNA is vital for disease diagnostics and to follow up alterations in gene expression profiles. Devices and strategies for biomolecular recognition and detection should be developed into reliable and inexpensive platforms. Here, we describe the development of a flexible thin-film sensor for label free gene expression analysis. A charge modulated ISFET based sensor was integrated with real-time DNA/RNA isothermal nucleic acid amplification: Loop-mediated isothermal amplification (LAMP) and Rolling Circle Amplification (RCA) techniques for c-MYC and BCR-ABL1 genes, allowing for the real-time quantification of template. Also, RCA allowed the direct quantification of RNA targets at room temperature, eliminating the requirement for external temperature controllers and overall complexity of the molecular diagnostic approach. This integration between the biological and the sensor/electronic approaches enabled the development of an inexpensive and direct gene expression-profiling platform.

Smuggling gold nanoparticles across cell types: A new role for exosomes in gene silencing, Roma-Rodrigues, Catarina, Pereira Francisca, {Alves De Matos} {António Pedro}, Fernandes Marta, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Nanomedicine-Nanotechnology Biology And Medicine, may, Volume 13, Number 4, p.1389–1398, (2017) Abstract

Once released to the extracellular space, exosomes enable the transfer of proteins, lipids and RNA between different cells, being able to modulate the recipient cells’ phenotypes. Members of the Rab small GTP-binding protein family, such as RAB27A, are responsible for the coordination of several steps in vesicle trafficking, including budding, mobility, docking and fusion. The use of gold nanoparticles (AuNPs) for gene silencing is considered a cutting-edge technology. Here, AuNPs were functionalized with thiolated oligonucleotides anti-RAB27A (AuNP@PEG@anti-RAB27A) for selective silencing of the gene with a consequent decrease of exosomes´ release by MCF-7 and MDA-MB-453 cells. Furthermore, communication between tumor and normal cells was observed both in terms of alterations in c-Myc gene expression and transportation of the AuNPs, mediating gene silencing in secondary cells.

A digital microfluidics platform for loop-mediated isothermal amplification detection, Coelho, {Beatriz Jorge}, Veigas Bruno, Águas Hugo, Fortunato Elvira, Martins Rodrigo, Baptista {Pedro Viana}, and Igreja Rui , Sensors, nov, Volume 17, Number 11, (2017) Abstract

Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3°C, for 65°C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions.

Potentiating angiogenesis arrest in vivo via laser irradiation of peptide functionalised gold nanoparticles, Pedrosa, Pedro, Heuer-Jungemann Amelie, Kanaras {Antonios G. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Journal of Nanobiotechnology, nov, Volume 15, Number 1, (2017) Abstract

Background: Anti-angiogenic therapy has great potential for cancer therapy with several FDA approved formulations but there are considerable side effects upon the normal blood vessels that decrease the potential application of such therapeutics. Chicken chorioallantoic membrane (CAM) has been used as a model to study angiogenesis in vivo. Using a CAM model, it had been previously shown that spherical gold nanoparticles functionalised with an anti-angiogenic peptide can humper neo-angiogenesis. Results: Our results show that gold nanoparticles conjugated with an anti-angiogenic peptide can be combined with visible laser irradiation to enhance angiogenesis arrest in vivo. We show that a green laser coupled to gold nanoparticles can achieve high localized temperatures able to precisely cauterize blood vessels. This combined therapy acts via VEGFR pathway inhibition, leading to a fourfold reduction in FLT-1 expression. Conclusions: The proposed phototherapy extends the use of visible lasers in clinics, combining it with chemotherapy to potentiate cancer treatment. This approach allows the reduction of dose of anti-angiogenic peptide, thus reducing possible side effects, while destroying blood vessels supply critical for tumour progression.

Immortalization and characterization of a new canine mammary tumour cell line FR37-CMT, Raposo, {L. R. }, Roma-Rodrigues C., Faísca P., Alves M., Henriques J., Carvalheiro {M. C. }, Corvo {M. L. }, Baptista {P. V. }, Pombeiro {A. J. }, and Fernandes {A. R. } , Veterinary and Comparative Oncology, sep, Volume 15, Number 3, p.952–967, (2017) Abstract

Here we describe the establishment of a new canine mammary tumour (CMT) cell line, FR37-CMT that does not show dependence on female hormonal signaling to induce tumour xenografts in NOD-SCID mice. FR37-CMT cell line has a stellate or fusiform shape, displays the ability to reorganize the collagen matrix, expresses vimentin, CD44 and shows the loss of E-cadherin which is considered a fundamental event in epithelial to mesenchymal transition (EMT). The up-regulation of ZEB1, the detection of phosphorylated ERK1/2 and the downregulation of DICER1 and miR-200c are also in accordance with the mesenchymal characteristics of FR37-CMT cell line. FR37-CMT shows a higher resistance to cisplatin (IC50>50 µM) and to doxorubicin (IC50>5.3 µM) compared with other CMT cell lines. These results support the use of FR37-CMT as a new CMT model that may assist the understanding of the molecular mechanisms underlying EMT, CMT drug resistance, fostering the development of novel therapies targeting CMT.

Photothermal enhancement of chemotherapy in breast cancer by visible irradiation of Gold Nanoparticles, Mendes, Rita, Pedrosa Pedro, Lima {João C. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Scientific Reports, sep, Volume 7, Number 1, (2017) Abstract

Photothermal Therapy (PTT) impact in cancer therapy has been increasing due to the enhanced photothermal capabilities of a new generation of nanoscale photothermal agents. Among these nanoscale agents, gold nanoshells and nanorods have demonstrated optimal properties for translation of near infra-red radiation into heat at the site of interest. However, smaller spherical gold nanoparticles (AuNPs) are easier to produce, less toxic and show improved photoconversion capability that may profit from the irradiation in the visible via standard surgical green lasers. Here we show the efficient light-to-heat conversion of spherical 14 nm AuNPs irradiated in the visible region (at the surface plasmons resonance peak) and its application to selectively obliterate cancer cells. Using breast cancer as model, we show a synergistic interaction between heat (photoconversion at 530 nm) and cytotoxic action by doxorubicin with clear advantages to those of the individual therapy approaches.

2018
Combination of chemotherapy and Au-nanoparticle photothermy in the visible light to tackle doxorubicin resistance in cancer cells, Pedrosa, Pedro, Mendes Rita, Cabral Rita, Martins {Luísa M. D. R. S. }, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Scientific Reports, dec, Volume 8, Number 1, (2018) Abstract

Despite great advances in the fight against cancer, traditional chemotherapy has been hindered by the dose dependent adverse side effects that reduce the usable doses for effective therapy. This has been associated to drug resistance in tumor cells that often cause relapse and therapy failure. These drawbacks have been tackled by combining different therapeutic regiments that prevent drug resistance while decreasing the chemotherapy dose required for efficacious ablation of cancer. In fact, new metallic compounds have been in a continuous development to extend the existing chemotherapy arsenal for these combined regimens. Here, we demonstrate that combination of a metallic compound (TS265), previously characterized by our group, with photothermy circumvents cells resistant to Doxorubicin (DOX). We first engendered a colorectal carcinoma cell line (HCT116) highly resistant to DOX, whose viability was diminished after administration of TS265. Cancer cell death was potentiated by challenging these cells with 14 nm spherical gold nanoparticles followed by laser irradiation at 532 nm. The combination of TS265 with photothermy lead to 65% cell death of the DOX resistant cells without impacting healthy cells. These results support the use of combined chemotherapy and photothermy in the visible spectrum as an efficient tool for drug resistant tumors.

Multifunctional microfluidic chip for optical nanoprobe based RNA detection - Application to Chronic Myeloid Leukemia, Alves, {Pedro Urbano}, Vinhas Raquel, Fernandes {Alexandra R. }, Birol {Semra Zuhal}, Trabzon Levent, Bernacka-Wojcik Iwona, Igreja Rui, Lopes Paulo, Baptista {Pedro Viana}, Águas Hugo, Fortunato Elvira, and Martins Rodrigo , Scientific Reports, dec, Volume 8, Number 1, (2018) Abstract

Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.

Nanoparticle-AntagoMIR based targeting of MIR-31 to induce osterix and osteocalcin expression in mesenchymal stem cells, McCully, Mark, Conde João, Baptista {Pedro V. }, Mullin Margaret, Dalby {Matthew J. }, and Berry {Catherine C. } , PLoS ONE, feb, Volume 13, Number 2, (2018) Abstract

Mesenchymal stem cells are multipotent adult stem cells capable of generating bone, cartilage and fat, and are thus currently being exploited for regenerative medicine. When considering osteogenesis, developments have been made with regards to chemical induction (e.g. differentiation media) and physical induction (e.g. material stiffness, nanotopography), targeting established early transcription factors or regulators such as runx2 or bone morphogenic proteins and promoting increased numbers of cells committing to osteo-specific differentiation. Recent research highlighted the involvement of microRNAs in lineage commitment and terminal differentiation. Herein, gold nanoparticles that confer stability to short single stranded RNAs were used to deliver MiR-31 antagomiRs to both pre-osteoblastic cells and primary human MSCs in vitro. Results showed that blocking miR-31 led to an increase in osterix protein in both cell types at day 7, with an increase in osteocalcin at day 21, suggesting MSC osteogenesis. In addition, it was noted that antagomiR sequence direction was important, with the 5 prime reading direction proving more effective than the 3 prime. This study highlights the potential that miRNA antagomiR-Tagged nanoparticles offer as novel therapeutics in regenerative medicine.

Nanoparticles as Delivery Systems in Cancer Therapy: Focus on Gold Nanoparticles and Drugs, Carvalho, Andreia, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , Applications of Targeted Nano Drugs and Delivery Systems, jan, Netherlands, p.257–295, (2018) Abstract

Conventional cancer chemotherapy presents several bottlenecks, such as lack of specificity that impacts healthy tissues, rapid drug metabolism, and both intrinsic/acquired drug resistances varying in patient status, which altogether lead to reduction of efficacy. To overcome these issues and improve efficacy, combination with novel nanotechnology approaches-cancer nanomedicine-in the areas of imaging, diagnosis, and drug delivery are being proposed. These developments have been focused upon the preparation and application of nanoparticles for cancer therapy. Gold nanoparticle (AuNP) applications have been projected for improved imaging, diagnosis, and therapy, due to their exquisite physicochemical and optical properties showing potential applications as drug/gene carriers, photothermal and contrast agents. All these features may potentiate selective drug delivery, thus improving efficacy and reducing side effects. In this chapter, we shall discuss applications of nanoparticles with focus on AuNPs as efficient targeted (drug) delivery systems in cancer therapy.

A novel BCR-ABL1 mutation in a patient with philadelphia chromosome-positive B-cell acute lymphoblastic leukemia, Vinhas, Raquel, Louren{\c c}o Alexandra, Santos Susana, Lemos Marcos, Ribeiro Patrícia, {de Sousa} {Aida Botelho}, Baptista {Pedro Viana}, and Fernandes {Alexandra Ramos} , OncoTargets and Therapy, jan, Volume 11, p.8589–8598, (2018) Abstract

Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) represents the most common genetic subtype of adult ALL (20%–30%) and accounts for approximately 50% of all cases in the elderly. It has been considered the subgroup of ALL with the worst outcome. The introduction of tyrosine kinase inhibitors (TKIs) allows complete hematologic remission virtually in all patients, with improved disease-free survival and overall survival. Nevertheless, the emergence of resistant mutations in BCR-ABL1 may require different TKI strategies to overcome the patient’s resistance and disease relapse. Here, we report a Ph+ B-ALL case with persistent minimal residual disease (MRD) after treatment with dasatinib. The patient expressed the P190BCR-ABL1 isoform and a novel BCR-ABL1 mutation, p.Y440C. The latter is in the C-terminal lobe of the kinase domain, which likely induces deviations in the protein structure and activity and destabilizes its inactive conformation. The treatment was substituted by bosutinib, which binds to the active conformation of the protein, prior to allogeneic bone marrow transplant to overcome the lack of a complete response to dasatinib. These findings strengthen the importance of BCR-ABL1 mutational screening in Ph+ patients, particularly for those who do not achieve complete molecular remission.

Synthesis, Cytotoxicity Evaluation in Human Cell Lines and in Vitro DNA Interaction of a Hetero-Arylidene-9(10H)-Anthrone, Peixoto, Daniela, Figueiredo Margarida, Malta Gabriela, Roma-Rodrigues Catarina, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Barroso Sónia, Carvalho {Ana Luísa}, Afonso {Carlos A. M. }, Ferreira {Luisa M. }, and Branco {Paula S. } , European Journal of Organic Chemistry, jan, Volume 2018, Number 4, p.545–549, (2018) Abstract

A new and never before reported hetero-arylidene-9(10H)-anthrone structure (4) was unexpectedly isolated on reaction of 1,2-dimethyl-3-ethylimidazolium iodide (2) and 9-anthracenecarboxaldehyde (3) under basic conditions. Its structure was unequivocally confirmed by X-ray crystallography. No cytotoxicity in human healthy fibroblasts and in two different cancer cell lines was observed, indicating its applicability in biological systems. Compound 4 interacts with CT-DNA by intercalation between the adjacent base pairs of DNA with a high binding affinity [Kb = 2.0 (±0.20) × 105 m–1], which is 10 × higher than that described for doxorubicin [Kb = 3.2 (±0.23) × 104 m–1]. Furthermore, compound 4 quenches the fluorescence emission of a GelRed–CT-DNA system with a quenching constant (KSV) of 3.3 (±0.3) × 103 m–1 calculated by the Stern–Volmer equation.

Nano-strategies to fight multidrug resistant bacteria-{"}A Battle of the Titans{"}, Baptista, {Pedro V. }, McCusker {Matthew P. }, Carvalho Andreia, Ferreira {Daniela A. }, Mohan {Niamh M. }, Martins M., and Fernandes {Alexandra R. } , Frontiers in Microbiology, jul, Volume 9, Number JUL, (2018) Abstract

Infectious diseases remain one of the leading causes of morbidity and mortality worldwide. The WHO and CDC have expressed serious concern regarding the continued increase in the development of multidrug resistance among bacteria. Therefore, the antibiotic resistance crisis is one of the most pressing issues in global public health. Associated with the rise in antibiotic resistance is the lack of new antimicrobials. This has triggered initiatives worldwide to develop novel and more effective antimicrobial compounds as well as to develop novel delivery and targeting strategies. Bacteria have developed many ways by which they become resistant to antimicrobials. Among those are enzyme inactivation, decreased cell permeability, target protection, target overproduction, altered target site/enzyme, increased efflux due to over-expression of efflux pumps, among others. Other more complex phenotypes, such as biofilm formation and quorum sensing do not appear as a result of the exposure of bacteria to antibiotics although, it is known that biofilm formation can be induced by antibiotics. These phenotypes are related to tolerance to antibiotics in bacteria. Different strategies, such as the use of nanostructured materials, are being developed to overcome these and other types of resistance. Nanostructured materials can be used to convey antimicrobials, to assist in the delivery of novel drugs or ultimately, possess antimicrobial activity by themselves. Additionally, nanoparticles (e.g., metallic, organic, carbon nanotubes, etc.) may circumvent drug resistance mechanisms in bacteria and, associated with their antimicrobial potential, inhibit biofilm formation or other important processes. Other strategies, including the combined use of plant-based antimicrobials and nanoparticles to overcome toxicity issues, are also being investigated. Coupling nanoparticles and natural-based antimicrobials (or other repurposed compounds) to inhibit the activity of bacterial efflux pumps; formation of biofilms; interference of quorum sensing; and possibly plasmid curing, are just some of the strategies to combat multidrug resistant bacteria. However, the use of nanoparticles still presents a challenge to therapy and much more research is needed in order to overcome this. In this review, we will summarize the current research on nanoparticles and other nanomaterials and how these are or can be applied in the future to fight multidrug resistant bacteria.

Evaluation of cell toxicity and DNA and protein binding of green synthesized silver nanoparticles, Ribeiro, {A. P. C. }, Anbu S., Alegria {E. C. B. A. }, Fernandes {A. R. }, Baptista {P. V. }, Mendes R., Matias {A. S. }, Mendes M., {Guedes da Silva} {M. F. C. }, and Pombeiro {A. J. L. } , Biomedicine and Pharmacotherapy, may, Volume 101, p.137–144, (2018) Abstract

Silver nanoparticles (AgNPs) were prepared by GREEN chemistry relying on the reduction of AgNO3 by phytochemicals present in black tea extract. AgNPs were fully characterized by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy ((UV-vis)), X-ray diffraction (XRD) and energy dispersive absorption spectroscopy (EDS). The synthesized AgNPs induced a decrease of the cell viability in a dose-dependent manner with a low IC50 (0.5 ± 0.1 μM) for an ovarian carcinoma cell line (A2780) compared to primary human fibroblasts (IC50 5.0 ± 0.1 μM). The DNA binding capability of CT (calf thymus) DNA was investigated using electronic absorption and fluorescence spectroscopies, circular dichroism and viscosity titration methods. Additionally, the AgNPs strongly quench the intrinsic fluorescence of BSA, as determined by synchronous fluorescence spectra.

Optical and Structural Characterization of a Chronic Myeloid Leukemia DNA Biosensor, Cordeiro, Mílton, Otrelo-Cardoso {Ana Rita Castro}, Svergun {Dmitri I. }, Konarev {Petr V. }, Lima {João Carlos}, Santos-Silva Teresa, and Baptista {Pedro Viana} , ACS Chemical Biology, may, Volume 13, Number 5, p.1235–1242, (2018) Abstract

Selective base pairing is the foundation of DNA recognition. Here, we elucidate the molecular and structural details of a FRET-based two-component molecular beacon relying on steady-state fluorescence spectroscopy, small-angle X-ray scattering (SAXS), microscale thermophoresis (MST), and differential electrophoretic mobility. This molecular beacon was designed to detect the most common fusion sequences causing chronic myeloid leukemia, e14a2 and e13a2. The emission spectra indicate that the self-assembly of the different components of the biosensor occurs sequentially, triggered by the fully complementary target. We further assessed the structural alterations leading to the specific fluorescence FRET signature by SAXS, MST, and the differential electrophoretic mobility, where the size range observed is consistent with hybridization and formation of a 1:1:1 complex for the probe in the presence of the complementary target and revelator. These results highlight the importance of different techniques to explore conformational DNA changes in solution and its potential to design and characterize molecular biosensors for genetic disease diagnosis.

A double Philadelphia chromosome-positive chronic myeloid leukemia patient, co-expressing P210BCR-ABL1 and P195BCR-ABL1 isoforms, Vinhas, Raquel, Louren{\c c}o Alexandra, Santos Susana, Ribeiro Patrícia, Silva Madalena, {de Sousa} {Aida Botelho}, Baptista {Pedro V. }, and Fernandes {Alexandra R. } , Haematologica, nov, Volume 103, Number 11, p.e549–e552, (2018) Abstract
n/a
The Important Role of the Nuclearity, Rigidity, and Solubility of Phosphane Ligands in the Biological Activity of Gold(I) Complexes, Svahn, Noora, Moro {Artur J. }, Roma-Rodrigues Catarina, Puttreddy Rakesh, Rissanen Kari, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Lima {João Carlos}, and Rodríguez Laura , Chemistry - A European Journal, oct, Volume 24, Number 55, p.14654–14667, (2018) Abstract

A series of 4-ethynylaniline gold(I) complexes containing monophosphane (1,3,5-triaza-7-phosphaadamantane (pta; 2), 3,7-diacetyl-1,3,7-triaza-5-phosphabicyclo[3.3.1]nonane (3), and PR3 , with R=naphthyl (4), phenyl (5), and ethyl (6)) and diphosphane (bis(diphenylphosphino)acetylene (dppa; 7), trans-1,2-bis(diphenylphosphino)ethene (dppet; 8), 1,2-bis(diphenylphosphino)ethane (dppe; 9), and 1,3-bis(diphenylphosphino)propane (dppp; 10)) ligands have been synthesized and their efficiency against tumor cells evaluated. The cytotoxicity of complexes 2-10 was evaluated in human colorectal (HCT116) and ovarian (A2780) carcinoma as well as in normal human fibroblasts. All the complexes showed a higher antiproliferative effect in A2780 cells, with the cytotoxicity decreasing in the following order 5>6=9=10>8>2>4>7>3. Complex 4 stands out for its very high selectivity towards ovarian carcinoma cells (IC50 =2.3 μm) compared with colorectal carcinoma and normal human fibroblasts (IC50 >100 μm), which makes this complex very attractive for ovarian cancer therapy. Its cytotoxicity in these cells correlates with the induction of the apoptotic process and an increase of intracellular reactive oxygen species (ROS). The effects of the nuclearity, rigidity, and solubility of these complexes on their biological activity were also analyzed. X-ray crystal structure determination allowed the identification of short N-H⋅⋅⋅π contacts as the main driving forces for the three-dimensional packing in these molecules.

POxylated Dendrimer-Based Nano-in-Micro Dry Powder Formulations for Inhalation Chemotherapy, Restani, {Rita B. }, Pires {Rita F. }, Tolmatcheva Anna, Cabral Rita, Baptista {Pedro V. }, Fernandes {Alexandra R. }, Casimiro Teresa, Bonifácio {Vasco D. B. }, and Aguiar-Ricardo Ana , ChemistryOpen, oct, Volume 7, Number 10, p.772–779, (2018) Abstract

POxylated polyurea dendrimer (PUREG4OOx48)-based nanoparticles were loaded with paclitaxel (PTX) and doxorubicin (DOX) and micronized with chitosan (CHT) by using supercritical CO2-assisted spray drying (SASD). Respirable, biocompatible, and biodegradable dry powder formulations (DPFs) were produced to effectively transport and deliver the chemotherapeutics with a controlled rate to the deep lung. In vitro studies performed with the use of the lung adenocarcinoma cell line showed that DOX@PUREG4OOx48 nanoparticles were much more cytotoxic than the free drug. Additionally, the DPFs did not show higher cytotoxicity than the respective nanoparticles, and DOX-DPFs showed a higher chemotherapeutic effect than PTX formulations in adenocarcinoma cells.

Gold nanoprobe-based non-crosslinking hybridization for molecular diagnostics: an update, Baptista, {Pedro V. } , Expert Review Of Molecular Diagnostics, sep, Volume 18, Number 9, p.767–773, (2018) Abstract

Introduction: An update on the uses and applications of the non-cross-linking (NCL) hybridization assay based on the spectral modulation of gold nanoparticles (AuNPs) are presented, emphasizing DNA and RNA detection. Areas covered: Nanotechnology is strongly impacting the way we address diagnostics and therapeutics. In fact, nanoscale devices and particles have been used in a variety of platforms for improved biosensing and, more interestingly, for molecular diagnostics. AuNPs have been used in a great diversity of DNA and RNA detection strategies that are based on their nanoscale properties. Their unique optical properties have put them at the forefront of colorimetric sensing platforms. Among these, those relying on the NCL mechanism using DNA-modified AuNPs have shown remarkable versatility and simplicity for molecular detection of human pathogens, identification of single base alterations at the basis of human disease, gene expression, among others. Application of the NCL assay to molecular diagnostics will be discussed considering the challenges for validation and clinically relevant targets. Expert commentary: Integration of the NCL approach using AuNPs into chip biosensing platforms, projecting miniaturization and portability, will be addressed in terms of the future, i.e. clinical validation and translation to market.

2019
Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles, Roma-Rodrigues, Catarina, Fernandes {Alexandra R. }, and Baptista {Pedro V. } , International journal of nanomedicine, Volume 14, p.6843–6854, (2019) Abstract

Purpose: Progression of chronic myeloid leukemia (CML) is frequently associated with increased angiogenesis at the bone marrow mediated by exosomes. The capability of gold nanoparticles (AuNPs) functionalized with antiangiogenic peptides to hinder the formation of new blood vessels has been demonstrated in a chorioallantoic membrane (CAM) model. Methods: Exosomes of K562 CML cell line were isolated and their angiogenic effect assessed in a CAM model. AuNPs functionalized with antiangiogenic peptides were used to block the angiogenic effect of CML-derived exosomes, assessed by evaluation of expression levels of key modulators involved in angiogenic pathways - VEGFA, VEGFR1 (also known as FLT1) and IL8. Results: Exosomes isolated from K562 cells promoted the doubling of newly formed vessels associated with the increase of VEGFR1 expression. This is a concentration and timedependent effect. The AuNPs functionalized with antiangiogenic peptides were capable to block the angiogenic effect by modulating VEGFR1 associated pathway. Conclusion: Exosomes derived from blast cells are capable to trigger (neo)-angiogenesis, a key factor for the progression and spreading of cancer, in particular in CML. AuNPs functionalized with specific antiangiogenic peptides are capable to block the effect of the exosomes produced by malignant cells via modulation of the intrinsic VEGFR pathway. Together, these data highlight the potential of nanomedicine-based strategies against cancer proliferation.