Dual-color control of nucleotide polymerization sensed by a fluorescence actuator,
Reimão-Pinto, {Madalena M. }, Cordeiro Ana, Almeida Carina, Pinheiro {Andre V. }, Moro Artur, Lima {João C. }, and Baptista Pedro
, Photochemical & Photobiological Sciences, Volume 13, Number 5, p.751–756, (2014)
AbstractSpatial and temporal control of molecular mechanisms can be achieved using photolabile bonds that connect biomolecules to protective caging groups, which can be cleaved upon irradiation of a specific wavelength, releasing the biomolecule ready-to-use. Here we apply and improve a previously reported strategy to tightly control in vitro transcription reactions. The strategy involves two caging molecules that block both ATP and GTP nucleotides. Additionally, we designed a molecular beacon complementary to the synthesized mRNA to infer its presence through a light signal. Upon release of both nucleotides through a specific monochromatic light (390 and 325 nm) we attain a light signal indicative of a successful in vitro transcription reaction. Similarly, in the absence of irradiation, no intense fluorescence signal was obtained. We believe this strategy could further be applied to DNA synthesis or the development of logic gates.
Exosome in Tumour Microenvironment: Overview of the Crosstalk between Normal and Cancer Cells,
Roma-Rodrigues, Catarina, de Fernandes {Maria Alexandra Núncio Carvalho Ramos}, and Baptista Pedro
, BioMed Research International, (2014)
AbstractCancer development is amultistep process in which exosomes play important roles. Exosomes are small vesicles formed in vesicular bodies in the endosomal network. The major role of exosomes seems to be the transport of bioactive molecules between cells. Depending on the cell of origin, exosomes are implicated in the regulation of several cellular events, with phenotypic consequences in recipient cells. Cancer derived exosomes (CCEs) are important players in the formation of the tumour microenvironment by (i) enabling the escape of tumour cells to immunological system and help initiating the inflammatory response; (ii) acting in the differentiation of fibroblasts and mesenchymal cells into myofibroblasts; (iii) triggering the angiogenic process; and (iv) enhancing the metastatic evolution of the tumour by promoting epithelial to mesenchymal transformation of tumour cells and by preparing the tumour niche in the new anatomical location. Since the finding that exosomes content resembles that of the cell of origin, they may be regarded as suitable biomarkers for cancer diagnosis, allowing for diagnosis and prognosis via a minimal invasive procedure. Exosome involvement in cancer may open new avenues regarding therapeutics, such as vectors for targeted drug delivery.
Gold Nanoparticles as (Bio)Chemical Sensors,
{Peixoto de Almeida}, Miguel, Pereira Eulália, Baptista Pedro, Gomes Inês, Figueiredo Sara, Soares Leonor, and Franco Ricardo
, Comprehensive Analytical Chemistry, Volume 66, p.529–567, (2014)
AbstractThis chapter focuses on several sensing strategies and major recent advances in the use of gold nanoparticles in (bio)sensing of chemical and biological analytes. A brief introduction is presented on relevant properties of gold nanoparticles for sensing, the main types of (bio)chemical sensors, and the main detection techniques, followed by subsections according to sensing methodologies. These include colorimetric sensing and the biobarcode assay, fluorometric-based methods, electric and electrochemical sensing, and, last, more recent and advanced methodologies such as surface plasmon resonance and Raman-based sensors. In closing, relevance is given to advanced methods, featuring extremely high sensitivity and selectivity, down to single-molecule detection. Anisotropic gold nanoparticles have a special role in future developments.
Polyurea dendrimer for efficient cytosolic siRNA delivery,
Restani, {Rita B. }, Conde João, Baptista {Pedro V. }, Cidade {Maria Teresa}, Bragan{\c c}a {Ana M. }, Morgado Jorge, Correia {Ilídio J. }, Aguiar-Ricardo Ana, and Bonifácio {Vasco D. B. }
, RSC Advances, Volume 4, Number 97, p.54872–54878, (2014)
AbstractThe design of small interfering RNA (siRNA) delivery materials showing efficacy in vivo is at the forefront of nanotherapeutics research. Polyurea (PURE-type) dendrimers are 'smart' biocompatible 3D polymers that unveil a dynamic and elegant back-folding mechanism involving hydrogen bonding between primary amines at the surface and tertiary amines and ureas at the core. Similarly, to a biological proton pump, they are able to automatically and reversibly transform their conformation in response to pH stimulus. Here, we show that PURE-G4 is a useful gene silencing platform showing no cellular toxicity. As a proof of concept we investigated the PURE-G4-siRNA dendriplex, which was shown to be an attractive platform with high transfection efficacy. The simplicity associated with the complexation of siRNA with polyurea dendrimers makes them a powerful tool for efficient cytosolic siRNA delivery.
A promising road with challenges: where are gold nanoparticles in translational research?,
Bao, Chenchen, Conde João, Polo Ester, {del Pino} Pablo, Moros Maria, Baptista Pedro, Grazu Valeria, Cui Daxiang, and {de la Fuente} {Jesus M. }
, Nanomedicine, Volume 9, Number 15, p.2353–2370, (2014)
AbstractNanoenabled technology holds great potential for health issues and biological research. Among the numerous inorganic nanoparticles that are available today, gold nanoparticles are fully developed as therapeutic and diagnostic agents both in vitro and in vivo due to their physicochemical properties. Owing to this, substantial work has been conducted in terms of developing biosensors for noninvasive and targeted tumor diagnosis and treatment. Some studies have even expanded into clinical trials. This article focuses on the fundamentals and synthesis of gold nanoparticles, as well as the latest, most promising applications in cancer research, such as molecular diagnostics, immunosensors, surface-enhanced Raman spectroscopy and bioimaging. Challenges to their further translational development are also discussed.
Revisiting 30 years of biofunctionalization and surface chemistry of inorganic nanoparticles for nanomedicine,
Conde, João, Dias {Jorge T. }, Grazu Valeria, Moros Maria, Baptista Pedro, and {de la Fuente} {Jesus M. }
, Frontiers in Chemistry, Volume 2, (2014)
AbstractIn the last 30 years we have assisted to a massive advance of nanomaterials in material science. Nanomaterials and structures, in addition to their small size, have properties that differ from those of larger bulk materials, making them ideal for a host of novel applications. The spread of nanotechnology in the last years has been due to the improvement of synthesis and characterization methods on the nanoscale, a field rich in new physical phenomena and synthetic opportunities. In fact, the development of functional nanoparticles has progressed exponentially over the past two decades. This work aims to extensively review 30 years of different strategies of surface modification and functionalization of noble metal (gold) nanoparticles, magnetic nanocrystals and semiconductor nanoparticles, such as quantum dots. The aim of this review is not only to provide in-depth insights into the different biofunctionalization and characterization methods, but also to give an overview of possibilities and limitations of the available nanoparticles.
Star-shaped magnetite@gold nanoparticles for protein magnetic separation and SERS detection,
Quaresma, Pedro, Osório Inês, c}alo Dória Gon{\c, Carvalho {Patrícia A. }, Pereira André, Langer Judith, Araújo {João Pedro}, Pastoriza-Santos Isabel, Liz-Marzán {Luis M. }, Franco Ricardo, Baptista Pedro, and Pereira Eulália
, RSC Advances, Volume 4, Number 8, p.3659–3667, (2014)
AbstractA novel synthetic methodology for star shaped gold-coated magnetic nanoparticles is reported. The coating is performed in two steps: formation of gold nuclei at the surface of magnetite nanoparticles followed by growth of the gold nuclei into a complete star shaped shell. The star-shaped gold-coated magnetic nanoparticles thus obtained preserve the magnetic properties of the precursor magnetite nanoparticles, e. g. they can be easily separated with a magnet. In addition, the gold coating provides interesting optical properties while simultaneously allowing for biofunctionalization that may be advantageous for biological applications, such as (bio)detection via surface-enhanced Raman spectroscopy (SERS). As a proof-of-concept, a capping agent terminated with a nickel(II)-nitrilotriacetate group showing high affinity for histidine was used to modify the surface of the nanoparticles. The resulting star-shaped nanoparticles were used to selectively capture histidine-tagged maltose-binding protein from a crude cell extract. Finally, the performance of star shaped gold-coated magnetic nanoparticles as SERS platforms was demonstrated through the detection of Raman active dye (Astra Blue).
AuNPs for identification of molecular signatures of resistance,
Veigas, Bruno, Fernandes {Alexandra R. }, and Baptista Pedro
, Frontiers in Microbiology, aug, Volume 5, (2014)
AbstractThe increasing levels of drug resistance are one of biggest threats to overcome microbial infection. The ability to rapidly and accurately detect a given pathogen and its drug resistance profile is essential for the appropriate treatment of patients and for preventing further spread of drug-resistant strains. The predictive and informative value of these molecular markers needs to be translated into robust surveillance tools that correlate to the target and extent of resistance, monitor multiresistance and provide real time assessment at point-of-need. Rapid molecular assays for the detection of drug-resistance signatures in clinical specimens are based on the detection of specific nucleotide sequences and/or mutations within pre-selected biomarkers in the genome, indicative of the presence of the pathogen and/or associated with drug resistance. DNA and/or RNA based assays offer advantages over phenotypic assays, such as specificity and time from collection to result. Nanotechnology has provided new and robust tools for the detection of pathogens and more crucially to the fast and sensitive characterisation of molecular signatures of drug resistance. Amongst the plethora of nanotechnology based approaches, gold nanoparticles have prompt for the development of new strategies and platforms capable to provide valuable data at point-of-need with increased versatility but reduced costs. Gold nanoparticles, due to their unique spectral, optical and electrochemical properties, are one of the most widely used nanotechnology systems for molecular diagnostics. This review will focus on the use of gold nanoparticles for screening molecular signatures of drug resistance that have been reported thus far, and provide a critical evaluation of current and future developments of these technologies assisting pathogen identification and characterisation.
Gold-nanobeacons for gene therapy: Evaluation of genotoxicity, cell toxicity and proteome profiling analysis,
Conde, João, Larguinho Miguel, Cordeiro Ana, Raposo {Luís R. }, Costa {Pedro M. }, Santos Susana, Diniz {Mário S. }, Fernandes {Alexandra R. }, and Baptista {Pedro V. }
, Nanotoxicology, aug, Volume 8, Number 5, p.521–532, (2014)
AbstractAntisense therapy is a powerful tool for post-transcriptional gene silencing suitable for down-regulating target genes associated to disease. Gold nanoparticles have been described as effective intracellular delivery vehicles for antisense oligonucleotides providing increased protection against nucleases and targeting capability via simple surface modification. We constructed an antisense gold-nanobeacon consisting of a stem-looped oligonucleotide double-labelled with 3′-Cy3 and 5′-Thiol-C6 and tested for the effective blocking of gene expression in colorectal cancer cells. Due to the beacon conformation, gene silencing was directly detected as fluorescence increases with hybridisation to target, which can be used to assess the level of silencing. Moreover, this system was extensively evaluated for the genotoxic, cytotoxic and proteomic effects of gold-nanobeacon exposure to cancer cells. The exposure was evaluated by two-dimensional protein electrophoresis followed by mass spectrometry to perform a proteomic profile and 3-(4,5-Dimethylthiazol-2- Yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay, glutathione-S-transferase assay, micronucleus test and comet assay to assess the genotoxicity. This integrated toxicology evaluation showed that the proposed nanotheranostics strategy does not exhibit significant toxicity, which is extremely relevant when translating into in vivo systems.
Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: Correlation with genotoxicity and metabolic alterations,
Larguinho, Miguel, Costa P. M., c}alo Sousa Gon{\c, Diniz {Mário S. }, Costa {Maria Helena}, and Baptista Pedro
, Journal of Applied Toxicology, dec, Volume 34, Number 12, p.1293–1302, (2014)
AbstractAcrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure.
Nanodiagnostics: Leaving the research lab to enter the clinics?,
Baptista, {Pedro Viana}
, Diagnosis, dec, Volume 1, Number 4, p.305–309, (2014)
AbstractNanotechnology has provided a plethora of valuable tools that can be applied for the detection of biomolecules and analytes relevant for diagnosis purposes - nanodiagnostics. This surging new field of molecular diagnostics has been revolutionizing laboratory procedures and providing new ways to assess disease biomarkers with increased sensitivity. While most of the reported nanodiagnostics systems are proof-of-concepts that demonstrate their efficacy in the lab, several nanodiagnostics platforms have already matured to a level that open the way for effective translation to the clinics. Nanodiagnostics platforms (e.g., gold nanoparticles containing systems) have been remarkably useful for the development of molecular diagnosis strategies for DNA/RNA detection and characterization, including systems suitable for point-of-care. How near are nanodiagnostics to go from the bench to the bedside?
Ion sensing (EIS) real-time quantitative monitorization of isothermal DNA amplification,
Veigas, Bruno, Branquinho Rita, {Vaz Pinto} Joana, Wojcik {Pawel Jerzy}, de Martins {Rodrigo Ferrão Paiva}, Fortunato {Elvira Maria Correia}, and Baptista {Pedro Miguel Ribeiro Viana}
, Biosensors & Bioelectronics, feb, Volume 52, p.50–55, (2014)
AbstractField-effect-based devices are becoming a basic structural element in a new generation of microbiosensors. Reliable molecular characterization of DNA and/or RNA is of paramount importance for disease diagnostics and to follow up alterations in gene expression profiles. The use of such devices for point-of-need diagnostics has been hindered by the need of standard or real-time PCR amplification procedures. The present work focuses on the development of a tantalum pentoxide (Ta2O5) based sensor for the real-time label free detection of DNA amplification via loop mediated isothermal amplification (LAMP) allowing for quantitative analysis of the cMYC proto-oncogene. The strategy based on the field effect sensor was tested within a range of 1 x 10(8)-10(11) copies of target DNA, and a linear relationship between the log copy number of the initial template DNA and threshold time was observed allowing for a semi-quantitative analysis of DNA template. The concept offers many of the advantages of isothermal quantitative real-time DNA amplification in a label free approach and may pave the way to point-of-care quantitative molecular analysis focused on ease of use and low cost.
Experimental optimization of a passive planar rhombic micromixer with obstacles for effective mixing in a short channel length,
Fortunato, {Elvira Maria Correia}, Águas {Hugo Manuel Brito}, Busani {Tito Livio}, de Martins {Rodrigo Ferrão Paiva}, and Baptista {Pedro Miguel Ribeiro Viana}
, RSC Advances, jan, Volume 4, Number 99, p.56013–56025, (2014)
AbstractThis paper presents the performance of a passive planar rhombic micromixer with diamond-shaped obstacles and a rectangular contraction between the rhombi. The device was experimentally optimized using water for high mixing efficiency and a low pressure drop over a wide range of Reynolds numbers (Re = 0.1-117.6) by varying geometrical parameters such as the number of rhombi, the distance between obstacles and the contraction width. Due to the large amount of data generated, statistical methods were used to facilitate and improve the results of the analysis. The results revealed a rank of factors influencing mixing efficiency: Reynolds number > number of rhombi > contraction width > interobstacles distance. The pressure drop measured after three rhombi depends mainly on Re and interobstacle distance. The resulting optimum geometry for the low Re regime has a contraction width of 101 mu m and inter-obstacles distance of 93 mu m, while for the high Re regime a contraction width of 400 v and inter-obstacle distance of 121 mu m are more appropriate. These mixers enabled 80% mixing efficiency creating a pressure drop of 6.0 Pa at Re = 0.1 and 5.1 x 10(4) Pa at Re = 117.6, with a mixer length of 2.5 mu m. To the authors' knowledge, the developed mixer is one of the shortest planar passive micromixers reported to date.