Publications in the Year: 2016

Journal Article

Vinhas, R, Tolmatcheva A, Canto R, Ribeiro P, Lourenco A, {de Sousa} {AB}, Baptista {PMRV}, de Fernandes {MANCR}.  2016.  A novel mutation in CEBPA gene in a patient with acute myeloid leukemia, mar. Leukemia & Lymphoma. 57:711–713., Number 3: TAYLOR & FRANCIS LTD Abstract
n/a
Roma-Rodrigues, C, Heuer-Jungemann A, de Fernandes {MANCR}, Kanaras {AG }, Baptista {PMRV}.  2016.  Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo. International journal of nanomedicine. 11:2633–2639.: Dove Medical Press Abstract

In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP-peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP-peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development.

Vinhas, R, Correia C, Ribeiro P, Lourenco A, {de Sousa} {AB}, de Fernandes {MANCR}, Baptista {PMRV}.  2016.  Colorimetric assessment of BCR-ABL1 transcripts in clinical samples via gold nanoprobes, jul. Analytical and Bioanalytical Chemistry. 408:5277–5284., Number 19: Springer Abstract

Gold nanoparticles functionalized with thiolated oligonucleotides (Au-nanoprobes) have been used in a range of applications for the detection of bioanalytes of interest, from ions to proteins and DNA targets. These detection strategies are based on the unique optical properties of gold nanoparticles, in particular, the intense color that is subject to modulation by modification of the medium dieletric. Au-nanoprobes have been applied for the detection and characterization of specific DNA sequences of interest, namely pathogens and disease biomarkers. Nevertheless, despite its relevance, only a few reports exist on the detection of RNA targets. Among these strategies, the colorimetric detection of DNA has been proven to work for several different targets in controlled samples but demonstration in real clinical bioanalysis has been elusive. Here, we used a colorimetric method based on Au-nanoprobes for the direct detection of the e14a2 BCR-ABL fusion transcript in myeloid leukemia patient samples without the need for retro-transcription. Au-nanoprobes directly assessed total RNA from 38 clinical samples, and results were validated against reverse transcription-nested polymerase chain reaction (RT-nested PCR) and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). The colorimetric Au-nanoprobe assay is a simple yet reliable strategy to scrutinize myeloid leukemia patients at diagnosis and evaluate progression, with obvious advantages in terms of time and cost, particularly in low- to medium-income countries where molecular screening is not routinely feasible.

Baptista, {PV}.  2016.  Precision nanomedicine in cancer: how far are we from personalization?, may Expert Review of Precision Medicine and Drug Development. 1:227–228., Number 3: Taylor & Francis Abstract
n/a
Ma, Z, Zhang B, {Guedes da Silva} F{MC }, Silva J, Mendo {AS}, Baptista {PV}, Fernandes {AR}, Pombeiro {AJL }.  2016.  Synthesis, characterization, thermal properties and antiproliferative potential of copper(II) 4 '-phenylterpyridine compounds. Dalton Transactions. 45:5339–5355., Number 12: RSC - Royal Society of Chemistry Abstract

Reactions between 4'-phenyl-terpyridine (L) and several Cu(II) salts (p-toluenesulfonate, benzoate and o-, m-or p-hydroxybenzoate) led to the formation of [Cu(p-SO3C6H4CH3)L(H2O)(2)](p-SO3C6H4CH3) (1), [Cu(OCOPh)(2)L] (2), [Cu(o-OCOC6H4OH)(2)L] (3), [Cu(m-OCOC6H4OH)(2)L]center dot MeOH (4 center dot MeOH) and [Cu(pOCOC(6)H(4)OH)(2)L]center dot 2H(2)O (5 center dot 2H2O), which were characterized by elemental and TG-DTA analyses, ESI-MS, IR spectroscopy and single crystal X-ray diffraction, as well as by conductivimetry. In all structures the Cu atoms present N3O3 octahedral coordination geometries, which, in 2-5, are highly distorted as a result of the chelating-bidentate mode of one of the carboxylate ligands. Intermolecular pi...pi stacking interactions could also be found in 2-5 (in the 3.569-3.651 angstrom range and involving solely the pyridyl rings). Mediumstrong hydrogen bond interactions lead to infinite 1D chains (in 1 and 4) and to an infinite 2D network (in 5). Compounds 1 and 4 show high in vitro cytotoxicity towards HCT116 colorectal carcinoma and HepG2 hepatocellular carcinoma cell lines. The antiproliferative potential of compound 1 is due to an increase of the apoptotic process that was confirmed by Hoechst staining, flow cytometry and RT-qPCR. All compounds able to non-covalently intercalate the DNA helix and induce in vitro pDNA double-strand breaks in the absence of H2O2. Concerning compound 1, the hydroxyl radical and singlet oxygen do not appear to be involved in the pDNA cleavage process and the fact that this cleavage also occurs in the absence of molecular oxygen points to a hydrolytic mechanism of cleavage.

Lenis-rojas, {OA }, Fernandes {AR }, Roma-Rodrigues C, Baptista {PV }, Marques F, Pérez-Fernández D, Guerra-Varela J, Sánchez-Magraner L, Vázquez-garcía D, Torres L}{M, Fernández-Planells A, Fernández-Rosas J.  2016.  Heteroleptic mononuclear compounds of ruthenium(II): Synthesis, structural analyses, in vitro antitumor activity and in vivo toxicity on zebrafish embryos, dec. Dalton Transactions. 45:19127–19140., Number 47: RSC - Royal Society of Chemistry Abstract

The limitations of platinum complexes in cancer treatment have motivated the extensive investigation into other metal complexes such as ruthenium. We herein present the synthesis and characterization of a new family of ruthenium compounds 1a–5a with the general formula [Ru(bipy)2L][CF3SO3]2 (bipy = 2,2′-bipyridine; L = bidentate ligand: N,N; N,P; P,P; P,As) which have been characterized by elemental analysis, ES-MS, 1H and 31P–{1H} NMR, FTIR and conductivity measurements. The molecular structures of four Ru(II) complexes were determined by single crystal X-ray diffraction. All compounds displayed moderate cytotoxic activity in vitro against human A2780 ovarian, MCF7 breast and HCT116 colorectal tumor cells. Compound 5a was the most cytotoxic compound against A2780 and MCF7 tumor cells with an IC50 of 4.75 ± 2.82 μM and 20.02 ± 1.46 μM, respectively. The compounds showed no cytotoxic effect on normal human primary fibroblasts but rather considerable selectivity for A2780, MCF7 and HCT116 tumor cells. All compounds induce apoptosis and autophagy in A2780 ovarian carcinoma cells and some nuclear DNA fragmentation. All compounds interact with CT-DNA with intrinsic binding constants in the order 1a > 4a > 2a > 3a > 5a. The observed hyperchromic effect may be due to the electrostatic interaction between positively charged cations and the negatively charged phosphate backbone at the periphery of the double helix-CT-DNA. Interestingly, compound 1a shows a concentration dependent DNA double strand cleavage. In addition in vivo toxicity has been evaluated on zebrafish embryos unveiling the differential toxicity between the compounds, with LC50 ranging from 8.67 mg L−1 for compound 1a to 170.30 mg L−1 for compound 2a.

Roma-Rodrigues, C, Alves-Barroco C, Raposo {LR }, Costa {MN }, Fortunato E, Baptista {PMRV}, de Fernandes {MANCR}, Santos-Sanches I.  2016.  Infection of human keratinocytes by Streptococcus dysgalactiae subspecies dysgalactiae isolated from milk of the bovine udder, apr. Microbes And Infection. 18:290–293., Number 4: Elsevier Science B.V., Inc Abstract

Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) are considered exclusive animal pathogens; however, a putative zoonotic upper limb cellulitis, a prosthetic joint infection and an infective endocarditis were described in humans. To unravel if bovine SDSD isolates are able to infect human cells, the adherence and internalization to human primary keratinocytes of two bovine SDSD strains isolated from milk collected from udder were analyzed. Bacterial adhesion assays and confocal microscopy indicate a high adherence and internalization of SDSD isolates to human cells, suggesting for the first time the ability of bovine isolates to infect human cells. (C) 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

Martins, M, Baptista PV, Mendo {AS}, Correia C, Videira P, Rodrigues AS, Muthukumaran J, Santos-Silva T, Silva A, {Guedes da Silva} F{MC }, Gigante J, Duarte A, Gajewska M, Fernandes AR.  2016.  In vitro and in vivo biological characterization of the anti-proliferative potential of a cyclic trinuclear organotin(IV) complex. Molecular Biosystems. 12:1015–1023., Number 3: ROYAL SOC CHEMISTRY Abstract

Identification of novel molecules that can selectively inhibit the growth of tumor cells, avoid causing side effects to patients and/or intrinsic or acquired resistance, usually associated with common chemotherapeutic agents, is of utmost importance. Organometallic compounds have gained importance in oncologic chemotherapy, such as organotin(IV) complexes. In this study, we assessed the anti-tumor activity of the cyclic trinuclear organotin(IV) complex with an aromatic oximehydroxamic acid group [nBu(2)Sn(L)](3)(H2L = N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) - MG85 - and provided further characterization of its biological targets. We have previously shown the high anti-proliferative activity of this complex against human colorectal and hepatocellular carcinoma cell lines and lower cytotoxicity in neonatal non-tumor fibroblasts. MG85 induces tumor cell apoptosis and down-regulation of proteins related to tubulin dynamics (TCTP and COF1). Further characterization included the: (i) evaluation of interference in the cell cycle progression, including the expression of critical genes; (ii) affinity to DNA and the corresponding mode of binding; (iii) genotoxic potential in cells with deficient DNA repair pathways; and (iv) in vivo tumor reduction efficiency using mouse colorectal carcinoma xenografts.

Cordeiro, M, Giestas L, Lima {JC }, Baptista {PMV }.  2016.  BioCode gold-nanobeacon for the detection of fusion transcripts causing chronic myeloid leukemia, may. Journal of Nanobiotechnology. 14, Number 1: BioMed Central (BMC) Abstract

BACKGROUND: Gold-nanobeacons (Au-nanobeacons) have proven to be versatile systems for molecular diagnostics and therapeutic actuators. Here, we present the development and characterization of two gold nanobeacons combined with Förster resonance energy transfer (FRET) based spectral codification for dual mode sequence discrimination. This is the combination of two powerful technologies onto a single nanosystem.RESULTS: We proved this concept to detect the most common fusion sequences associated with the development of chronic myeloid leukemia, e13a2 and e14a2. The detection is based on spectral shift of the donor signal to the acceptor, which allows for corroboration of the hybridization event. The Au-nanobeacon acts as scaffold for detection of the target in a homogenous format whose output capability (i.e. additional layer of information) is potentiated via the spectral codification strategy.CONCLUSIONS: The spectral coded Au-nanobeacons permit the detection of each of the pathogenic fusion sequences, with high specificity towards partial complementary sequences. The proposed BioCode Au-nanobeacon concept provides for a nanoplatform for molecular recognition suitable for cancer diagnostics.

Conde, J, Tian F, {de la Fuente} {JM }, Baptista {PMRV}.  2016.  Editorial: Cancer Nanotheranostics: What Have We Learned So Far?, jan Frontiers in Chemistry. 3: Frontiers Media Abstract
n/a
{Luisa Corvo}, M, Mendo {AS}, Figueiredo S, Gaspar R, Larguinho M, {Guedes da Silva} F{MC }, Baptista {PMRV}, de Fernandes {MANCR}.  2016.  Liposomes as Delivery System of a Sn(IV) Complex for Cancer Therapy, jun. Pharmaceutical Research. 33:1351–1358., Number 6: SPRINGER/PLENUM PUBLISHERS Abstract

Tin complexes demonstrate antiproliferative activities in some case higher than cisplatin, with IC50 at the low micromolar range. We have previously showed that the cyclic trinuclear complex of Sn(IV) bearing an aromatic oximehydroxamic acid group [nBu(2)Sn(L)](3) (L=N,2-dihydroxy-5-[N-hydroxyethanimidoyl]benzamide) (MG85) shows high anti-proliferative activity, induces apoptosis and oxidative stress, and causes destabilization of tubulin microtubules, particularly in colorectal carcinoma cells. Despite the great efficacy towards cancer cells, this complex still shows some cytotoxicity to healthy cells. Targeted delivery of this complex specifically towards cancer cells might foster cancer treatment.MG85 complex was encapsulated into liposomal formulation with and without an active targeting moiety and cancer and healthy cells cytotoxicity was evaluated.Encapsulation of MG85 complex in targeting PEGylated liposomes enhanced colorectal carcinoma (HCT116) cancer cell death when compared to free complex, whilst decreasing cytotoxicity in non-tumor cells. Labeling of liposomes with Rhodamine allowed assessing internalization in cells, which showed significant cell uptake after 6 h of incubation. Cetuximab was used as targeting moiety in the PEGylated liposomes that displayed higher internalization rate in HCT116 cells when compared with non-targeted liposomes, which seems to internalize via active binding of Cetuximab to cells.The proposed formulation open new avenues in the design of innovative transition metal-based vectorization systems that may be further extended to other novel metal complexes towards the improvement of their anti-cancer efficacy, which is usually hampered by solubility issues and/or toxicity to healthy tissues.

Mendes, R, Carreira B, Baptista {PV}, Fernandes {AR}.  2016.  Non-small cell lung cancer biomarkers and targeted therapy - two faces of the same coin fostered by nanotechnology, mar. Expert Review of Precision Medicine and Drug Development. 1:155–168., Number 2: Taylor & Francis Abstract

Lung cancer is the leading cause of cancer-related mortality in the world, non-small lung cancer (NSCLC) is the most frequent subtype (85% of the cases). Within this subtype, adenocarcinoma and squamous cell carcinoma are the most frequent. New therapeutic strategies based on targeted delivery of drugs have relied on the use of biomarkers derived from the patients’ molecular profiling. Several biomarkers have been found to be useful for use as targets for precision therapy in NSCLC, such as mutations in the epidermal growth factor receptor, v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog, anaplastic lymphoma kinase, mesenchymal-epithelial transition factor receptor tyrosine kinase, BRAF, c-ros oncogene 1, P53 and phosphatase with tensin homology. Current developments in Nanomedicine have allowed for multifunctional systems capable of delivering therapeutics with increased precision to the target site/tissue, while simultaneously assisting in diagnosis. Here, we review the use of biomarkers in nanotechnology translation in NSCLC management.

Cordeiro, M, Pedrosa P, Carlos {FF}, Lopez A, Baptista {PV}.  2016.  Gold nanoparticles for diagnostics: Advances towards points of care, dec. Diagnostics. 6, Number 4: MDPI - Multidisciplinary Digital Publishing Institute Abstract

The remarkable physicochemical properties of gold nanoparticles (AuNPs) have prompted developments in the exploration of biomolecular interactions with AuNP-containing systems, in particular for biomedical applications in diagnostics. These systems show great promise in improving sensitivity, ease of operation and portability. Despite this endeavor, most platforms have yet to reach maturity and make their way into clinics or points of care (POC). Here, we present an overview of emerging and available molecular diagnostics using AuNPs for biomedical sensing that are currently being translated to the clinical setting.

loading