Publications

Sort by: Type [ Year  (Desc)]
2024
Membrane-localized magnetic hyperthermia promotes intracellular delivery of cell-impermeant probes, Idiago-López, Javier, Ferreira Daniela, Asín Laura, Moros María, Armenia Ilaria, Grazú Valeria, Fernandes {Alexandra R. }, {de la Fuente} {Jesús M. }, Baptista {Pedro V. }, and Fratila {Raluca M. } , Nanoscale, aug, Volume 16, Number 32, p.15176–15195, (2024) Abstract

In this work, we report the disruptive use of membrane-localized magnetic hyperthermia to promote the internalization of cell-impermeant probes. Under an alternating magnetic field, magnetic nanoparticles (MNPs) immobilized on the cell membrane via bioorthogonal click chemistry act as nanoheaters and lead to the thermal disruption of the plasma membrane, which can be used for internalization of different types of molecules, such as small fluorescent probes and nucleic acids. Noteworthily, no cell death, oxidative stress and alterations of the cell cycle are detected after the thermal stimulus, although cells are able to sense and respond to the thermal stimulus through the expression of different types of heat shock proteins (HSPs). Finally, we demonstrate the utility of this approach for the transfection of cells with a small interference RNA (siRNA), revealing a similar efficacy to a standard transfection method based on the use of cationic lipid-based reagents (such as Lipofectamine), but with lower cell toxicity. These results open the possibility of developing new procedures for “opening and closing” cellular membranes with minimal disturbance of cellular integrity. This on-demand modification of cell membrane permeability could allow the direct intracellular delivery of biologically relevant (bio)molecules, drugs and nanomaterials, thus overcoming traditional endocytosis pathways and avoiding endosomal entrapment.

2023
Parylene C as a Multipurpose Material for Electronics and Microfluidics, Coelho, {Beatriz J. }, Pinto {Joana V. }, Martins Jorge, Rovisco Ana, Barquinha Pedro, Fortunato Elvira, Baptista {Pedro V. }, Martins Rodrigo, and Igreja Rui , Polymers, may, Volume 15, Number 10, (2023) Abstract

Poly(p-xylylene) derivatives, widely known as Parylenes, have been considerably adopted by the scientific community for several applications, ranging from simple passive coatings to active device components. Here, we explore the thermal, structural, and electrical properties of Parylene C, and further present a variety of electronic devices featuring this polymer: transistors, capacitors, and digital microfluidic (DMF) devices. We evaluate transistors produced with Parylene C as a dielectric, substrate, and encapsulation layer, either semitransparent or fully transparent. Such transistors exhibit steep transfer curves and subthreshold slopes of 0.26 V/dec, negligible gate leak currents, and fair mobilities. Furthermore, we characterize MIM (metal–insulator–metal) structures with Parylene C as a dielectric and demonstrate the functionality of the polymer deposited in single and double layers under temperature and AC signal stimuli, mimicking the DMF stimuli. Applying temperature generally leads to a decrease in the capacitance of the dielectric layer, whereas applying an AC signal leads to an increase in said capacitance for double-layered Parylene C only. By applying the two stimuli, the capacitance seems to suffer from a balanced influence of both the separated stimuli. Lastly, we demonstrate that DMF devices with double-layered Parylene C allow for faster droplet motion and enable long nucleic acid amplification reactions.

Open-source tool for real-time and automated analysis of droplet-based microfluidic, Neto, {Joana P. }, Mota Ana, c}alo Lopes Gon{\c, Coelho {Beatriz J. }, Frazão João, Moura {André T. }, Oliveira Beatriz, Sieira Bárbara, Fernandes José, Fortunato Elvira, Martins Rodrigo, Igreja Rui, Baptista {Pedro V. }, and Águas Hugo , Lab On A Chip, jul, Volume 23, Number 14, p.3238–3244, (2023) Abstract

Droplet-based microfluidic technology is a powerful tool for generating large numbers of monodispersed nanoliter-sized droplets for ultra-high throughput screening of molecules or single cells. Yet further progress in the development of methods for the real-time detection and measurement of passing droplets is needed for achieving fully automated systems and ultimately scalability. Existing droplet monitoring technologies are either difficult to implement by non-experts or require complex experimentation setups. Moreover, commercially available monitoring equipment is expensive and therefore limited to a few laboratories worldwide. In this work, we validated for the first time an easy-to-use, open-source Bonsai visual programming language to accurately measure in real-time droplets generated in a microfluidic device. With this method, droplets are found and characterized from bright-field images with high processing speed. We used off-the-shelf components to achieve an optical system that allows sensitive image-based, label-free, and cost-effective monitoring. As a test of its use we present the results, in terms of droplet radius, circulation speed and production frequency, of our method and compared its performance with that of the widely-used ImageJ software. Moreover, we show that similar results are obtained regardless of the degree of expertise. Finally, our goal is to provide a robust, simple to integrate, and user-friendly tool for monitoring droplets, capable of helping researchers to get started in the laboratory immediately, even without programming experience, enabling analysis and reporting of droplet data in real-time and closed-loop experiments.

Hybrid Digital-Droplet Microfluidic Chip for Applications in Droplet Digital Nucleic Acid Amplification: Design, Fabrication and Characterization, Coelho, {Beatriz J. }, Neto {Joana P. }, Sieira Bárbara, Moura {André T. }, Fortunato Elvira, Martins Rodrigo, Baptista {Pedro V. }, Igreja Rui, and Águas Hugo , Sensors, Volume 23, Number 10, (2023) Abstract

Microfluidic-based platforms have become a hallmark for chemical and biological assays, empowering micro- and nano-reaction vessels. The fusion of microfluidic technologies (digital microfluidics, continuous-flow microfluidics, and droplet microfluidics, just to name a few) presents great potential for overcoming the inherent limitations of each approach, while also elevating their respective strengths. This work exploits the combination of digital microfluidics (DMF) and droplet microfluidics (DrMF) on a single substrate, where DMF enables droplet mixing and further acts as a controlled liquid supplier for a high-throughput nano-liter droplet generator. Droplet generation is performed at a flow-focusing region, operating on dual pressure: negative pressure applied to the aqueous phase and positive pressure applied to the oil phase. We evaluate the droplets produced with our hybrid DMF–DrMF devices in terms of droplet volume, speed, and production frequency and further compare them with standalone DrMF devices. Both types of devices enable customizable droplet production (various volumes and circulation speeds), yet hybrid DMF–DrMF devices yield more controlled droplet production while achieving throughputs that are similar to standalone DrMF devices. These hybrid devices enable the production of up to four droplets per second, which reach a maximum circulation speed close to 1540 µm/s and volumes as low as 0.5 nL.

2022
Digital Microfluidics-Powered Real-Time Monitoring of Isothermal DNA Amplification of Cancer Biomarker, Coelho, {Beatriz Jorge}, Veigas Bruno, Bettencourt Luís, Águas Hugo, Fortunato Elvira, Martins Rodrigo, Baptista {Pedro V. }, and Igreja Rui , Biosensors, mar, Volume 12, Number 4, (2022) Abstract

We introduce a digital microfluidics (DMF) platform specifically designed to perform a loop-mediated isothermal amplification (LAMP) of DNA and applied it to a real-time amplification to monitor a cancer biomarker, c-Myc (associated to 40% of all human tumors), using fluorescence microscopy. We demonstrate the full manipulation of the sample and reagents on the DMF platform, resulting in the successful amplification of 90 pg of the target DNA (0.5 ng/µL) in less than one hour. Furthermore, we test the efficiency of an innovative mixing strategy in DMF by employing two mixing methodologies onto the DMF droplets—low frequency AC (alternating current) actuation as well as back-and-forth droplet motion—which allows for improved fluorescence readouts. Fluo-rophore bleaching effects are minimized through on-chip sample partitioning by DMF processes and sequential droplet irradiation. Finally, LAMP reactions require only 2 µL volume droplets, which represents a 10-fold volume reduction in comparison to benchtop LAMP.

2021
Vanadium(IV) complexes with methyl-substituted 8-hydroxyquinolines: Catalytic potential in the oxidation of hydrocarbons and alcohols with peroxides and biological activity, Palion-Gazda, Joanna, Luz André, Raposo {Luis R. }, Choroba Katarzyna, Nycz {Jacek E. }, Bieńko Alina, Lewińska Agnieszka, Erfurt Karol, Baptista {Pedro V. }, Machura Barbara, Fernandes {Alexandra R. }, Shul’pina {Lidia S. }, Ikonnikov {Nikolay S. }, and Shul’pin {Georgiy B. } , Molecules, oct, Volume 26, Number 21, (2021) Abstract

Methyl-substituted 8-hydroxyquinolines (Hquin) were successfully used to synthetize five-coordinated oxovanadium(IV) complexes: [VO(2,6-(Me)2-quin)2 ] (1), [VO(2,5-(Me)2-quin)2 ] (2) and [VO(2-Me-quin)2 ] (3). Complexes 1–3 demonstrated high catalytic activity in the oxidation of hydrocarbons with H2 O2 in acetonitrile at 50◦ C, in the presence of 2-pyrazinecarboxylic acid (PCA) as a cocatalyst. The maximum yield of cyclohexane oxidation products attained was 48%, which is high in the case of the oxidation of saturated hydrocarbons. The reaction leads to the formation of a mixture of cyclohexyl hydroperoxide, cyclohexanol and cyclohexanone. When triphenylphosphine is added, cyclohexyl hydroperoxide is completely converted to cyclohexanol. Consideration of the regioand bond-selectivity in the oxidation of n-heptane and methylcyclohexane, respectively, indicates that the oxidation proceeds with the participation of free hydroxyl radicals. The complexes show moderate activity in the oxidation of alcohols. Complexes 1 and 2 reduce the viability of colorectal (HCT116) and ovarian (A2780) carcinoma cell lines and of normal dermal fibroblasts without showing a specific selectivity for cancer cell lines. Complex 3 on the other hand, shows a higher cytotoxicity in a colorectal carcinoma cell line (HCT116), a lower cytotoxicity towards normal dermal fibroblasts and no effect in an ovarian carcinoma cell line (order of magnitude HCT116 > fibroblasts > A2780).

2018
Multifunctional microfluidic chip for optical nanoprobe based RNA detection - Application to Chronic Myeloid Leukemia, Alves, {Pedro Urbano}, Vinhas Raquel, Fernandes {Alexandra R. }, Birol {Semra Zuhal}, Trabzon Levent, Bernacka-Wojcik Iwona, Igreja Rui, Lopes Paulo, Baptista {Pedro Viana}, Águas Hugo, Fortunato Elvira, and Martins Rodrigo , Scientific Reports, dec, Volume 8, Number 1, (2018) Abstract

Many diseases have their treatment options narrowed and end up being fatal if detected during later stages. As a consequence, point-of-care devices have an increasing importance for routine screening applications in the health sector due to their portability, fast analyses and decreased cost. For that purpose, a multifunctional chip was developed and tested using gold nanoprobes to perform RNA optical detection inside a microfluidic chip without the need of molecular amplification steps. As a proof-of-concept, this device was used for the rapid detection of chronic myeloid leukemia, a hemato-oncological disease that would benefit from early stage diagnostics and screening tests. The chip passively mixed target RNA from samples, gold nanoprobes and saline solution to infer a result from their final colorimetric properties. An optical fiber network was used to evaluate its transmitted spectra inside the chip. Trials provided accurate output results within 3 min, yielding signal-to-noise ratios up to 9 dB. When compared to actual state-of-art screening techniques of chronic myeloid leukemia, these results were, at microscale, at least 10 times faster than the reported detection methods for chronic myeloid leukemia. Concerning point-of-care applications, this work paves the way for other new and more complex versions of optical based genosensors.

2017
A digital microfluidics platform for loop-mediated isothermal amplification detection, Coelho, {Beatriz Jorge}, Veigas Bruno, Águas Hugo, Fortunato Elvira, Martins Rodrigo, Baptista {Pedro Viana}, and Igreja Rui , Sensors, nov, Volume 17, Number 11, (2017) Abstract

Digital microfluidics (DMF) arises as the next step in the fast-evolving field of operation platforms for molecular diagnostics. Moreover, isothermal schemes, such as loop-mediated isothermal amplification (LAMP), allow for further simplification of amplification protocols. Integrating DMF with LAMP will be at the core of a new generation of detection devices for effective molecular diagnostics at point-of-care (POC), providing simple, fast, and automated nucleic acid amplification with exceptional integration capabilities. Here, we demonstrate for the first time the role of coupling DMF and LAMP, in a dedicated device that allows straightforward mixing of LAMP reagents and target DNA, as well as optimum temperature control (reaction droplets undergo a temperature variation of just 0.3°C, for 65°C at the bottom plate). This device is produced using low-temperature and low-cost production processes, adaptable to disposable and flexible substrates. DMF-LAMP is performed with enhanced sensitivity without compromising reaction efficacy or losing reliability and efficiency, by LAMP-amplifying 0.5 ng/µL of target DNA in just 45 min. Moreover, on-chip LAMP was performed in 1.5 µL, a considerably lower volume than standard bench-top reactions.

Digital microfluidics for nucleic acid amplification, Coelho, Beatriz, Veigas Bruno, Fortunato Elvira, Martins Rodrigo, Águas Hugo, Igreja Rui, and Baptista {Pedro V. } , Sensors, jul, Volume 17, Number 7, (2017) Abstract

Digital Microfluidics (DMF) has emerged as a disruptive methodology for the control and manipulation of low volume droplets. In DMF, each droplet acts as a single reactor, which allows for extensive multiparallelization of biological and chemical reactions at a much smaller scale. DMF devices open entirely new and promising pathways for multiplex analysis and reaction occurring in a miniaturized format, thus allowing for healthcare decentralization from major laboratories to point-of-care with accurate, robust and inexpensive molecular diagnostics. Here, we shall focus on DMF platforms specifically designed for nucleic acid amplification, which is key for molecular diagnostics of several diseases and conditions, from pathogen identification to cancer mutations detection. Particular attention will be given to the device architecture, materials and nucleic acid amplification applications in validated settings.

2015
Single Nucleotide Polymorphism Detection Using Gold Nanoprobes and Bio-Microfluidic Platform With Embedded Microlenses, Bernacka-Wojcik, Iwona, Águas Hugo, Carlos {Fabio Ferreira}, Lopes Paulo, Wojcik {Pawel Jerzy}, Costa {Mafalda Nascimento}, Veigas Bruno, Igreja Rui, Fortunato Elvira, Baptista Pedro, and Martins Rodrigo , Biotechnology and Bioengineering, jun, Volume 112, Number 6, p.1210–1219, (2015) Abstract

The use of microfluidics platforms combined with the optimal optical properties of gold nanopartides has found plenty of application in molecular biosensing. This paper describes a biotnicrofluidic platform coupled to a non-cross-linking colorimetric gold nanoprobe assay to detect a single nucleotide polymorphism associated with increased risk of obesity fat-mass and obesity-associated (FTO) rs9939609 (Carlos et al., 2014). The system enabled significant discrimination between positive and negative assays using a target DNA concentration of 5 ng/mu l below the limit of detection of the conventionally used microplate reader (i.e., 15 ng/mu l) with 10 times lower solution volume (i.e., 3 mu l.). A set of optimization of our previously reported bio-microfluidic platform (Bemacka-Wojcik et al., 2013) resulted in a 160% improvement of colorimetric analysis results. Incorporation of planar microlenses increased 6 times signal-to-loss ratio reaching the output optical fiber improving by 34% the colorimetric analysis of gold nanopartides, while the implementation of an optoelectronic acquisition system yielded increased accuracy and reduced noise. The microfluidic chip was also integrated with a miniature fiber spectrometer to analyze the assays' cobrimetric changes and also the LEDs transmission spectra when illuminating through various solutions. Furthermore, by coupling an optical micmscope to a digital camera with a long exposure time (30s), we could visualise the different scatter intensities of gold nanoparticles within channels following salt addition. These intensities correlate well to the expected difference in aggregation between FTO positive (none to small aggregates) and negative samples (large aggregates). (C) 2015 Wiley Periodicals, Inc.

2014
A low cost, safe, disposable, rapid and self-sustainable paper-based platform for diagnostic testing: Lab-on-paper, Costa, {Mafalda Nascimento}, Veigas Bruno, Jacob {Jorge M. }, Santos {David S. }, Gomes Jacinto, Baptista {Pedro Viana}, Martins Rodrigo, Inácio João, and Fortunato Elvira , Nanotechnology, mar, Volume 25, Number 9, (2014) Abstract

There is a strong interest in the use of biopolymers in the electronic and biomedical industries, mainly towards low-cost applications. The possibility of developing entirely new kinds of products based on cellulose is of current interest, in order to enhance and to add new functionalities to conventional paper-based products. We present our results towards the development of paper-based microfluidics for molecular diagnostic testing. Paper properties were evaluated and compared to nitrocellulose, the most commonly used material in lateral flow and other rapid tests. Focusing on the use of paper as a substrate for microfluidic applications, through an eco-friendly wax-printing technology, we present three main and distinct colorimetric approaches: (i) enzymatic reactions (glucose detection); (ii) immunoassays (antibodies anti-Leishmania detection); (iii) nucleic acid sequence identification (Mycobacterium tuberculosis complex detection). Colorimetric glucose quantification was achieved through enzymatic reactions performed within specific zones of the paper-based device. The colouration achieved increased with growing glucose concentration and was highly homogeneous, covering all the surface of the paper reaction zones in a 3D sensor format. These devices showed a major advantage when compared to the 2D lateral flow glucose sensors, where some carryover of the coloured products usually occurs. The detection of anti-Leishmania antibodies in canine sera was conceptually achieved using a paper-based 96-well enzyme-linked immunosorbent assay format. However, optimization is still needed for this test, regarding the efficiency of the immobilization of antigens on the cellulose fibres. The detection of Mycobacterium tuberculosis nucleic acids integrated with a non-cross-linking gold nanoprobe detection scheme was also achieved in a wax-printed 384-well paper-based microplate, by the hybridization with a species-specific probe. The obtained results with the above-mentioned proof-of-concept sensors are thus promising towards the future development of simple and cost-effective paper-based diagnostic devices.

2013
Invivo tumor targeting via nanoparticle-mediated therapeutic siRNA coupled to inflammatory response in lung cancer mouse models, Conde, João, Tian Furong, Hernández Yulán, Bao Chenchen, Cui Daxiang, Janssen {Klaus Peter}, Ibarra Ricardo} {M., Baptista {Pedro V. }, Stoeger Tobias, and {de la Fuente} {Jesús M. } , Biomaterials, oct, Volume 34, Number 31, p.7744–7753, (2013) Abstract

Up to now, functionalized gold nanoparticles have been optimized as an effective intracellular invitro delivery vehicle for siRNAs to interfere with the expression of specific genes by selective targeting, and provide protection against nucleases. Few examples however of suchlike invivo applications have been described so far. In this study, we report the use of siRNA/RGD gold nanoparticles capable of targeting tumor cells in a lung cancer syngeneic orthotopic murine model. Therapeutic RGD-nanoparticle treatment resulted in successful targeting evident from significant c-myc oncogene down-regulation followed by tumor growth inhibition and prolonged survival of lung tumor bearing mice, possibly via αvβ3 integrin interaction. Our results suggest that RGD gold nanoparticles-mediated delivery of siRNA by intratracheal instillation in mice leads to successful suppression of tumor cell proliferation and respective tumor size reduction. These results reiterate the capability of functionalized gold nanoparticles for targeted delivery of siRNA to cancer cells towards effective silencing of the specific target oncogene. What is more, we demonstrate that the gold-nanoconjugates trigger a complex inflammatory and immune response that might promote the therapeutic effect of the RNAi to reduce tumor size with low doses of siRNA.

2012
Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing, Conde, João, Ambrosone Alfredo, Sanz Vanesa, Hernandez Yulan, Marchesano Valentina, Tian Furong, Child Hannah, Berry {Catherine C. }, Ibarra Ricardo} {M., Baptista {Pedro V. }, Tortiglione Claudia, and {de la Fuente} {Jesus M. } , ACS Nano, sep, Volume 6, Number 9, p.8316–8324, (2012) Abstract

Over the past decade, the capability of double-stranded RNAs to interfere with gene expression has driven new therapeutic approaches. Since small interfering RNA (siRNAs, 21 base pair double-stranded RNA) was shown to be able to elicit RNA interference (RNAi), efforts were directed toward the development of efficient delivery systems to preserve siRNA bioactivity throughout the delivery route, from the administration site to the target cell. Here we provide evidence of RNAi triggering, specifically silencing c-myc protooncogene, via the synthesis of a library of novel multifunctional gold nanoparticles (AuNPs). The efficiency of the AuNPs is demonstrated using a hierarchical approach including three biological systems of increasing complexity: in vitro cultured human cells, in vivo invertebrate (freshwater polyp, Hydra), and in vivo vertebrate (mouse) models. Our synthetic methodology involved fine-tuning of multiple structural and functional moieties. Selection of the most active functionalities was assisted step-by-step through functional testing that adopted this hierarchical strategy. Merging these chemical and biological approaches led to a safe, nonpathogenic, self-tracking, and universally valid nanocarrier that could be exploited for therapeutic RNAi.

Gold on paper-paper platform for Au-nanoprobe TB detection, Veigas, {Bruno Miguel Ribeiro}, Jacob {Jorge Alexandre Marmelo}, Costa {Mafalda N. }, de Santos {David Pena Sousa}, Bettencourt {Miguel Viveiros}, Inácio João, de Martins {Rodrigo Ferrão Paiva}, Barquinha {Pedro Miguel Cândido}, Fortunato {Elvira Maria Correia}, and Baptista {Pedro Miguel Ribeiro Viana} , Lab On A Chip, nov, Volume 12, Number 22, p.4802–8, (2012) Abstract

Tuberculosis (TB) remains one of the most serious infectious diseases in the world and the rate of new cases continues to increase. The development of cheap and simple methodologies capable of identifying TB causing agents belonging to the Mycobacterium tuberculosis Complex (MTBC), at point-of-need, in particular in resource-poor countries where the main TB epidemics are observed, is of paramount relevance for the timely and effective diagnosis and management of patients. TB molecular diagnostics, aimed at reducing the time of laboratory diagnostics from weeks to days, still require specialised technical personnel and labour intensive methods. Recent nanotechnology-based systems have been proposed to circumvent these limitations. Here, we report on a paper-based platform capable of integrating a previously developed Au-nanoprobe based MTBC detection assay-we call it {"}Gold on Paper{"}. The Au-nanoprobe assay is processed and developed on a wax-printed microplate paper platform, allowing unequivocal identification of MTBC members and can be performed without specialised laboratory equipment. Upon integration of this Au-nanoprobe colorimetric assay onto the 384-microplate, differential colour scrutiny may be captured and analysed with a generic {"}smartphone{"} device. This strategy uses the mobile device to digitalise the intensity of the colour associated with each colorimetric assay, perform a Red Green Blue (RGB) analysis and transfer relevant information to an off-site lab, thus allowing for efficient diagnostics. Integration of the GPS location metadata of every test image may add a new dimension of information, allowing for real-time epidemiologic data on MTBC identification.

Multifunctional gold nanoparticles for gene silencing, Sanz, Vanesa, Conde João, Ambrosone Alfredo, Hernandez Yulan, Marchesasno Valentina, Estrada {Giovani G. }, Ibarra {Manuel R. }, Baptista {Pedro V. }, Tian Furong, Tortiglione Claudia, and {de la Fuente} {Jesus M. } , Abstracts Of Papers Of The American Chemical Society, mar, Volume 243, (2012) Abstract
n/a
Effect of PEG biofunctional spacers and TAT peptide on dsRNA loading on gold nanoparticles, Sanz, Vanesa, Conde João, Hernández Yulán, Baptista {Pedro V. }, Ibarra {Manuel R. }, and {de la Fuente} {Jesús M. } , Journal Of Nanoparticle Research, jun, Volume 14, Number 6, (2012) Abstract

The surface chemistry of gold nanoparticles (AuNPs) plays a critical role in the self-assembly of thiolated molecules and in retaining the biological function of the conjugated biomolecules. According to the well-established gold-thiol interaction the undefined ionic species on citrate-reduced gold nanoparticle surface can be replaced with a self-assembled monolayer of certain thiolate derivatives and other biomolecules. Understanding the effect of such derivatives in the functionalization of several types of biomolecules, such as PEGs, peptides or nucleic acids, has become a significant challenge. Here, an approach to attach specific biomolecules to the AuNPs (∼14 nm) surface is presented together with a study of their effect in the functionalization with other specific derivatives. The effect of biofunctional spacers such as thiolated poly(ethylene glycol) (PEG) chains and a positive peptide, TAT, in dsRNA loading on AuNPs is reported. Based on the obtained data, we hypothesize that loading of oligonucleotides onto the AuNP surface may be controlled by ionic and weak interactions positioning the entry of the oligo through the PEG layer. We demonstrate that there is a synergistic effect of the TAT peptide and PEG chains with specific functional groups on the enhancement of dsRNA loading onto AuNPs.

2011
Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex, Silva, {Leonardo Bione}, Veigas Bruno, c}alo Doria Gon{\c, Costa Pedro, Inácio João, Martins Rodrigo, Fortunato Elvira, and Baptista {Pedro Viana} , Biosensors & Bioelectronics, jan, Volume 26, Number 5, p.2012–2017, (2011) Abstract

In this paper we report on the fabrication and performance of a portable and low cost optoelectronic platform integrating a double color tuned light emitting diode as light source, an amorphous/nanocrystalline silicon photodetector with a flat spectral response in the wavelength range from 520. nm to 630. nm and integrated electronic for signal acquisition and conditioning constituted by current to voltage converter, a filter and an amplification stage, followed by an analog to digital converter, with appropriate software for full automation to minimize human error. Incorporation of the double color tuned light emitting diode provides for a simple yet innovative solution to signal acquisition independently from the light intensity and/or solution concentration, while considerably decreasing production costs. Detection based on Au-nanoprobes constitutes the biorecognition step and allowed identification of specific sequences of Mycobacterium tuberculosis complex, namely Mycobacterium bovis and M. tuberculosis in biological samples.

1998
Bacterial contig map of the 21q11 region associated with Alzheimer's disease and abnormal myelopoiesis in Down syndrome, GROET, J., Ives {J. H. }, South {A. P. }, Baptista {P. R. }, Jones {T. A. }, Yaspo {M. L. }, Lehrach H., Potier {M. C. }, {Van Broeckhoven} C., and Nizetic D. , Genome Research, jan, Volume 8, Number 4, p.385–398, (1998) Abstract

We present a high-resolution bacterial contig map of 3.4 Mb of genomic DNA in human chromosome 21q11-q21, encompassing the region of elevated disomic homozygosity in Down Syndrome-associated abnormal myelopoiesis and leukemia, as well as the markers, which has shown a strong association with Alzheimer's Disease that has never been explained. The map contains 89 overlapping PACs, BACs, or cosmids in three contigs (850, 850, and 1500 kb) with two gaps (one of 140-210 kb and the second < 5 kb). To date, eight transcribed sequences derived by cDNA selection, exon trapping, and/or global EST sequencing have been positioned onto the map, and the only two genes so far mapped to this cytogenetic region, STCH and RIP140 have been precisely localized. This work converts a further 10% of chromosome 21q into a high-resolution bacterial contig map, which will be the physical basis for the long-range sequencing of this region. The map will also enable positional derivation of new transcribed sequences, as well as new polymorphic probes, that will help in elucidation of the role the genes in this region may play in abnormal myelopoiesis and leukemia associated with trisomy 21 and Alzheimer's Disease.