https://vtt.pure.elsevier.com/en/publications/transflexteg-large-area-transparent-thin-film-thermoelectric-devi

Citation:
João, C. F. C., A. C. Baptista, I. M. M. Ferreira, J. C. Silva, and J. P. Borges, "https://vtt.pure.elsevier.com/en/publications/transflexteg-large-area-transparent-thin-film-thermoelectric-devi", Fibrous and textile materials for composite applications, Singapore, Springer, pp. 261-299, 2016.

Abstract:

Cellulose and chitin are the two most abundant natural polysaccharides. Both have a semicrystalline microfibrillar structure from which nanofibres can be extracted. These nanofibres are rod-like microcrystals that can be used as nanoscale reinforcements in composites due to their outstanding mechanical properties. This chapter starts by reviewing the sources, extraction methods and properties of cellulose and chitin nanofibres. Then, their use in the fabrication of structural and functional nanocomposites and the applications that have been investigated are reviewed. Nanocomposites are materials with internal nano-sized structures. They benefit from the properties of the nanofillers: low density, nonabrasive, nontoxic, low cost, susceptibility to chemical modifications and biodegradability. Diverse manufacturing technologies have been used to produce films, fibres, foams, sponges, aerogels, etc. Given their natural origin and high stiffness, these polymers have attracted a lot of attention not only in the biomedical and tissue engineering fields but also in areas such as pharmaceutics, cosmetics, agriculture, biosensors and water treatment.

Related External Link