Publications

Export 25 results:
Sort by: Author [ Title  (Asc)] Type Year
A B [C] D E F G H I J K L M N O P Q R S T U V W X Y Z   [Show ALL]
A
Neves, N., A. Lagoa, J. Calado, B. A. M. do Rego, E. Fortunato, R. Martins, and I. Ferreira, "Al-doped ZnO nanostructured powders by emulsion detonation synthesis – Improving materials for high quality sputtering targets manufacturing", J. Eur. Ceram. Soc., vol. 34, issue 10, pp. 2325-2338, 2014. AbstractDOI

Emulsion detonation synthesis method was used to produce undoped and Al-doped ZnO nanostructured powders (0.5–2.0 wt.% Al2O3). The synthesized powders present a controlled composition and a morphology which is independent on the doping level. The XRD results indicate wurtzite as the single phase for undoped ZnO and the presence of gahnite as secondary phase for Al-doped ZnO powders. The sintering behavior of each powder was studied based on their linear shrinkage and shrinkage rate curves, showing the high sinterability of the powders. Activation energies for densification in the earlier stage were calculated for all compositions and possible sintering mechanisms are suggested depending on the doping level. The high chemical homogeneity and sinterability and the lower electrical resistivity of the bulk Al-doped sintered samples demonstrates the feasibility of emulsion detonation synthesis for the production of high quality Al-doped ZnO powders to be used in ceramic sputtering targets manufacture.

B
Mendes, M. J., S. Morawiec, T. Mateus, A. Lyubchyk, H. Águas, I. Ferreira, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband light trapping in thin film solar cells with self-organized plasmonic nano-colloids", Nanotechnology, vol. 26, issue 13, pp. 135202, 2015. AbstractDOI

The intense light scattered from metal nanoparticles sustaining surface plasmons makes them attractive for light trapping in photovoltaic applications. However, a strong resonant response from nanoparticle ensembles can only be obtained if the particles have monodisperse physical properties. Presently, the chemical synthesis of colloidal nanoparticles is the method that produces the highest monodispersion in geometry and material quality, with the added benefits of being low-temperature, low-cost, easily scalable and of allowing control of the surface coverage of the deposited particles. In this paper, novel plasmonic back-reflector structures were developed using spherical gold colloids with appropriate dimensions for pronounced far-field scattering. The plasmonic back reflectors are incorporated in the rear contact of thin film n-i-p nanocrystalline silicon solar cells to boost their photocurrent generation via optical path length enhancement inside the silicon layer. The quantum efficiency spectra of the devices revealed a remarkable broadband enhancement, resulting from both light scattering from the metal nanoparticles and improved light incoupling caused by the hemispherical corrugations at the cells' front surface formed from the deposition of material over the spherically shaped colloids.

Morawiec, S., M. J. Mendes, S. A. Filonovich, T. Mateus, S. Mirabella, H. Águas, I. Ferreira, F. Simone, E. Fortunato, R. Martins, F. Priolo, and I. Crupi, "Broadband photocurrent enhancement in a-Si:H solar cells with plasmonic back reflectors", Opt. Express, vol. 22, issue 104, pp. A1059-A1070, 2014. AbstractDOI

Plasmonic light trapping in thin film silicon solar cells is a promising route to achieve high efficiency with reduced volumes of semiconductor material. In this paper, we study the enhancement in the opto-electronic performance of thin a-Si:H solar cells due to the light scattering effects of plasmonic back reflectors (PBRs), composed of self-assembled silver nanoparticles (NPs), incorporated on the cells’ rear contact. The optical properties of the PBRs are investigated according to the morphology of the NPs, which can be tuned by the fabrication parameters. By analyzing sets of solar cells built on distinct PBRs we show that the photocurrent enhancement achieved in the a-Si:H light trapping window (600 – 800 nm) stays in linear relation with the PBRs diffuse reflection. The best-performing PBRs allow a pronounced broadband photocurrent enhancement in the cells which is attributed not only to the plasmon-assisted light scattering from the NPs but also to the front surface texture originated from the conformal growth of the cell material over the particles. As a result, remarkably high values of Jsc and Voc are achieved in comparison to those previously reported in the literature for the same type of devices.

C
Ropio, I., A. C. Baptista, J. P. Nobre, J. Correia, F. Belo, S. Taborda, M. B. M. Faustino, J. P. Borges, A. Kovalenko, and I. Ferreira, "Cellulose paper functionalised with polypyrrole and poly(3,4-ethylenedioxythiophene) for paper battery electrodes", Org Electron, 2018. AbstractDOI

A simple process of commercial paper functionalisation via in situ polymerisation of conductive polymers onto cellulose fibres was investigated and applied as electrodes in paper-based batteries. The functionalisation involved polypyrrole (PPy) and Poly (3,4-ethylenedioxythiophene) (PEDOT) as conductive polymers with the process of functionalisation optimised for each polymer individually with respect to oxidant-to-monomer ratios and polymerisation times and temperature. Paper with conductivity values of 44 mS/cm was obtained by exposing the samples to pyrrole vapour for a period of 30 min at room temperature; however, polymerisation at temperatures of 40 °C lead to higher conductivity values to up 141 mS/cm. Consequently, functionalised PPy and PEDOT papers were applied as cathodes in batteries with Al foil anodes and commercial paper soaked in an electrolyte solution of NaCl.

Contreras, J., R. Martins, P. Wojcik, S. Filonovich, H. Águas, L. Gomes, E. Fortunato, and I. Ferreira, "Color sensing ability of an amorphous silicon position sensitive detector array system", Sensor Actuat. A-Phys., vol. 205, pp. 26-37, 2014. AbstractDOI

The color sensing ability of a data acquisition prototype system integrating a 32 linear array of 1D amorphous silicon position sensitive detectors (PSD) was analyzed. Besides being used to reproduce a 3D profile of highly reflective surfaces, here we show that it can also differentiate primary red, green, blue (RGB) and derived colors. This was realized by using an incident beam with a RGB color combination and adequate integration times taking into account that a color surface mostly reflects its corresponding color. A mean colorimetric error of 25.7 was obtained. Overall, we show that color detection is possible via the use of this sensor array system, composed by a simpler amorphous silicon pin junction.

Perdigão, P., B. M. Faustino, J. Faria, J. P. Canejo, J. P. Borges, I. Ferreira, and A. C. Baptista, "Conductive electrospun polyaniline/polyvinylpyrrolidone nanofibers: Electrical and morphological characterization of new yarns for electronic textiles", Fibers, vol. 8, pp. 24, 2020.
Cristovão, A. F., D. Sousa, F. Silvestre, I. Ropio, A. Gaspar, C. Henriques, A. Velhinho, A. C. Baptista, M. Faustino, and I. Ferreira, "Customized tracheal design using 3D printing of a polymer hydrogel: influence of UV laser cross-linking on mechanical properties", 3D Print Med, vol. 5, pp. 12, 2019.
E
Esteves, C., G. M. C. Santos, C. Alves, S. I. C. J. Palma, A. R. Porteira, H. M. A. Costa, V. D. Alves, B. M. M. Faustino, I. Ferreira, and H. Gamboa, "Effect of film thickness in gelatine hybrid gels for artificial olfaction", Materials Today Bio, vol. 1, pp. 100002, 2019.
Soares, P. I. P., A. M. R. Alves, L. C. J. Pereira, J. T. Coutinho, I. M. M. Ferreira, C. M. M. Novo, and J. P. M. R. Borges, "Effects of surfactants on the magnetic properties of iron oxide colloids", J. Colloid Interface Sci., vol. 419, pp. 46-51, 2014. AbstractDOI

Iron oxide nanoparticles are having been extensively investigated for several biomedical applications such as hyperthermia and magnetic resonance imaging. However, one of the biggest problems of these nanoparticles is their aggregation.

Taking this into account, in this study the influence of three different surfactants (oleic acid, sodium citrate and Triton X-100) each one with various concentrations in the colloidal solutions stability was analyzed by using a rapid and facile method, the variation in the optical absorbance along time.

The synthesized nanoparticles through chemical precipitation showed an average size of 9 nm and a narrow size distribution. X-ray diffraction pattern and Fourier Transform Infrared analysis confirmed the presence of pure magnetite. SQUID measurements showed superparamagnetic properties with a blocking temperature around 155 K. In addition it was observed that neither sodium citrate nor Triton X-100 influences the magnetic properties of the nanoparticles. On the other hand, oleic acid in a concentration of 64 mM decreases the saturation magnetization from 67 to 45 emu/g. Oleic acid exhibits a good performance as stabilizer of the iron oxide nanoparticles in an aqueous solution for 24 h, for concentrations that lead to the formation of the double layer.

F
Sousa, D. M., L. Cerqueira, A. Marques, G. Gaspar, J. C. Lima, and I. Ferreira, "Facile Microwave-assisted Synthesis Manganese Doped Zinc Sulfide Nanoparticles", Scientific Reports, vol. 8, pp. 15992, 2018.