Spin-equilibrium and heme-ligand alteration in a high-potential monoheme cytochrome (cytochrome c554) from Achromobacter cycloclastes, a denitrifying organism,
Saraiva, L. M., Liu M. Y., Payne W. J., Legall J., Moura J. J., and Moura I.
, Eur J Biochem, Apr 30, Volume 189, Number 2, p.333-41, (1990)
AbstractA c-type monoheme cytochrome c554 (13 kDa) was isolated from cells of Achromobacter cycloclastes IAM 1013 grown anaerobically as a denitrifier. The visible absorption spectrum indicates the presence of a band at 695 nm characteristic of heme-methionine coordination (low-spin form) coexisting with a minor high-spin form as revealed by the contribution at 630 nm. Magnetic susceptibility measurements support the existence of a small contribution of a high-spin form at all pH values, attaining a minimum at intermediate pH values. The mid-point redox potential determined by visible spectroscopy at pH 7.2 is +150 mV. The pH-dependent spin equilibrum and other relevant structural features were studied by 300-MHz 1H-NMR spectroscopy. In the oxidized form, the 1H-NMR spectrum shows pH dependence with pKa values at 5.0 and 8.9. According to these pKa values, three forms designated as I, II and III can be attributed to cytochrome c554. Forms I and II predominate at low pH values, and the 1H-NMR spectra reveal heme methyl proton resonances between 40 ppm and 22 ppm. These forms have a methionyl residue as a sixth ligand, and C6 methyl group of the bound methionine was identified in the low-field region of the NMR spectra. Above pH 9.6, form III predominates and the 1H-NMR spectrum is characterized by down-field hyperfine-shifted heme methyl proton resonances between 29 ppm and 22 ppm. Two new resonances are observed at congruent to 66 ppm and 54 ppm, and are taken as indicative of a new type of heme coordination (probably a lysine residue). These pH-dependent features of the 1H-NMR spectra are discussed in terms of the heme environment structure. The chemical shifts of the methyl resonances at different pH values exhibit anti-Curie temperature dependence. In the ferrous state, the 1H-NMR spectrum shows a methyl proton resonance at -3.9 ppm characteristic of methionine axial ligation. The electron-transfer rate between ferric and ferrous forms has been estimated to be smaller than 2 x 10(4) M-1 s-1 at pH 5. EPR spectroscopy was also used to probe the ferric heme environment. A prominent signal at gmax congruent to 3.58 and the overall lineshape of the spectrum indicate an almost axial heme environment.
Purification and characterization of bisulfite reductase (desulfofuscidin) from Desulfovibrio thermophilus and its complexes with exogenous ligands,
Fauque, G., Lino A. R., Czechowski M., Kang L., Dervartanian D. V., Moura J. J., Legall J., and Moura I.
, Biochim Biophys Acta, Aug 1, Volume 1040, Number 1, p.112-8, (1990)
AbstractA dissimilatory bisulfite reductase has been purified from a thermophilic sulfate-reducing bacterium Desulfovibrio thermophilus (DSM 1276) and studied by EPR and optical spectroscopic techniques. The visible spectrum of the purified bisulfite reductase exhibits absorption maxima at 578.5, 392.5 and 281 nm with a weak band around 700 nm. Photoreduction of the native enzyme causes a decrease in absorption at 578.5 nm and a concomitant increase in absorption at 607 nm. When reduced, the enzyme reacts with cyanide, sulfite, sulfide and carbon monoxide to give stable complexes. The EPR spectrum of the native D. thermophilus bisulfite reductase shows the presence of a high-spin ferric signal with g values at 7.26, 4.78 and 1.92. Upon photoreduction the high-spin ferric heme signal disappeared and a typical 'g = 1.94' signal of [4Fe-4S] type cluster appeared. Chemical analyses show that the enzyme contains four sirohemes and eight [4Fe-4S] centers per mol of protein. The molecular mass determined by gel filtration was found to be 175 kDa. On SDS-gel electrophoresis the enzyme presents a main band of 44 to 48 kDa. These results suggest that the bisulfite reductase contains probably one siroheme and two [4Fe-4S] centers per monomer. The dissimilatory bisulfite reductase from D. thermophilus presents some homologous properties with desulfofuscidin, the bisulfite reductase isolated from Thermodesulfobacterium commune (Hatchikian, E.C. and Zeikus, J.G. (1983) J. Bacteriol. 153, 1211-1220).
Hexaheme nitrite reductase from Desulfovibrio desulfuricans. Mossbauer and EPR characterization of the heme groups,
Costa, C., Moura J. J., Moura I., Liu M. Y., Peck, H. D. Jr., Legall J., Wang Y. N., and Huynh B. H.
, J Biol Chem, Aug 25, Volume 265, Number 24, p.14382-8, (1990)
AbstractMossbauer and EPR spectroscopy were used to characterize the heme prosthetic groups of the nitrite reductase isolated from Desulfovibrio desulfuricans (ATCC 27774), which is a membrane-bound multiheme cytochrome capable of catalyzing the 6-electron reduction of nitrite to ammonia. At pH 7.6, the as-isolated enzyme exhibited a complex EPR spectrum consisting of a low-spin ferric heme signal at g = 2.96, 2.28, and 1.50 plus several broad resonances indicative of spin-spin interactions among the heme groups. EPR redox titration studies revealed yet another low-spin ferric heme signal at g = 3.2 and 2.14 (the third g value was undetected) and the presence of a high-spin ferric heme. Mossbauer measurements demonstrated further that this enzyme contained six distinct heme groups: one high-spin (S = 5/2) and five low-spin (S = 1/2) ferric hemes. Characteristic hyperfine parameters for all six hemes were obtained through a detailed analysis of the Mossbauer spectra. D. desulfuricans nitrite reductase can be reduced by chemical reductants, such as dithionite or reduced methyl viologen, or by hydrogenase under hydrogen atmosphere. Addition of nitrite to the fully reduced enzyme reoxidized all five low-spin hemes to their ferric states. The high-spin heme, however, was found to complex NO, suggesting that the high-spin heme could be the substrate binding site and that NO could be an intermediate present in an enzyme-bound form.
Regulation of the hexaheme nitrite/nitric oxide reductase of Desulfovibrio desulfuricans, Wolinella succinogenes and Escherichia coli. A mass spectrometric study,
Costa, C., Macedo A., Moura I., Moura J. J., Legall J., Berlier Y., Liu M. Y., and Payne W. J.
, FEBS Lett, Dec 10, Volume 276, Number 1-2, p.67-70, (1990)
AbstractDissimilatory nitrite reduction, carried out by hexaheme proteins, gives ammonia as the final product. Representatives of this enzyme group from 3 bacterial species can also reduce NO to either ammonia or N2O. The redox regulation of the nitrite/nitric oxide activities is discussed in the context of the denitrifying pathway.
Purification and characterization of desulfoferrodoxin. A novel protein from Desulfovibrio desulfuricans (ATCC 27774) and from Desulfovibrio vulgaris (strain Hildenborough) that contains a distorted rubredoxin center and a mononuclear ferrous center,
Moura, I., Tavares P., Moura J. J., Ravi N., Huynh B. H., Liu M. Y., and Legall J.
, J Biol Chem, Dec 15, Volume 265, Number 35, p.21596-602, (1990)
AbstractA new type of non-heme iron protein was purified to homogeneity from extracts of Desulfovibrio desulfuricans (ATCC 27774) and Desulfovibrio vulgaris (strain Hildenborough). This protein is a monomer of 16-kDa containing two iron atoms per molecule. The visible spectrum has maxima at 495, 368, and 279 nm and the EPR spectrum of the native form shows resonances at g = 7.7, 5.7, 4.1 and 1.8 characteristic of a high-spin ferric ion (S = 5/2) with E/D = 0.08. Mossbauer data indicates the presence of two types of iron: an FeS4 site very similar to that found in desulforedoxin from Desulfovibrio gigas and an octahedral coordinated high-spin ferrous site most probably with nitrogen/oxygen-containing ligands. Due to this rather unusual combination of active centers, this novel protein is named desulfoferrodoxin. Based on NH2-terminal amino acid sequence determined so far, the desulfoferrodoxin isolated from D. desulfuricans (ATCC 27774) appears to be a close analogue to a recently discovered gene product from D. vulgaris (Brumlik, M.J., and Voordouw, G. (1989) J. Bacteriol. 171, 49996-50004), which was suggested to be a rubredoxin oxidoreductase. However, reduced pyridine nucleotides failed to reduce the desulforedoxin-like center of this new protein.
The active centers of adenylylsulfate reductase from Desulfovibrio gigas. Characterization and spectroscopic studies,
Lampreia, J., Moura I., Teixeira M., Peck, H. D. Jr., Legall J., Huynh B. H., and Moura J. J.
, Eur J Biochem, Mar 30, Volume 188, Number 3, p.653-64, (1990)
AbstractIn order to utilize sulfate as the terminal electron acceptor, sulfate-reducing bacteria are equipped with a complex enzymatic system in which adenylylsulfate (AdoPSO4) reductase plays one of the major roles, reducing AdoPSO4 (the activated form of sulfate) to sulfite, with release of AMP. The enzyme has been purified to homogeneity from the anaerobic sulfate reducer Desulfovibrio gigas. The protein is composed of two non-identical subunits (70 kDa and 23 kDa) and is isolated in a multimeric form (approximately 400 kDa). It is an iron-sulfur, flavin-containing protein, with one FAD moiety, eight iron atoms and a minimum molecular mass of 93 kDa. Low-temperature EPR studies were performed to characterize its redox centers. In the native state, the enzyme showed an almost isotropic signal centered at g = 2.02 and only detectable below 20 K. This signal represented a minor species (0.10-0.25 spins/mol) and showed line broadening in the enzyme isolated from 57Fe-grown cells. Addition of sulfite had a minor effect on the EPR spectrum, but caused a major decrease in the visible region of the optical spectrum (around 392 nm). Further addition of AMP induced only a minor change in the visible spectrum whereas major changes were seen in the EPR spectrum; the appearance of a rhombic signal at g values 2.096, 1.940 and 1.890 (reduced Fe-S center I) observable below 30 K and a concomitant decrease in intensity of the g = 2.02 signal were detected. Effects of chemical reductants (ascorbate, H2/hydrogenase-reduced methyl viologen and dithionite) were also studied. A short time reduction with dithionite (15 s) or reduction with methyl viologen gave rise to the full reduction of center I (with slightly modified g values at 2.079, 1.939 and 1.897), and the complete disappearance of the g = 2.02 signal. Further reduction with dithionite produces a very complex EPR spectrum of a spin-spin-coupled nature (observable below 20 K), indicating the presence of at least two iron-sulfur centers, (centers I and II). Mossbauer studies on 57Fe-enriched D. gigas AdoPSO4 reductase demonstrated unambiguously the presence of two 4Fe clusters. Center II has a redox potential less than or equal to 400 mV and exhibits spectroscopic properties that are characteristic of a ferredoxin-type [4Fe-4S] cluster. Center I exhibits spectra with atypical Mossbauer parameters in its reduced state and has a midpoint potential around 0 mV, which is distinct from that of a ferredoxin-type [4Fe-4S] cluster, suggesting a different structure and/or a distinct cluster-ligand environment.